• Title/Summary/Keyword: PID control gain

Search Result 269, Processing Time 0.023 seconds

Simple Fuzzy PID Controllers for DC-DC Converters

  • Seo, K.W.;Choi, Han-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.724-729
    • /
    • 2012
  • A fuzzy PID controller design method is proposed for precise robust control of DC-DC buck converters. The PID parameters are determined reflecting on the common control engineering knowledge that transient performances can be improved if the P and I gains are big and the D gain is small at the beginning. Different from the previous fuzzy control design methods, the proposed method requires no defuzzification module and the global stability of the proposed fuzzy control system can be guaranteed. The proposed fuzzy PID controller is implemented by using a low-cost 8-bit microcontroller, and simulation and experimental results are given to demonstrate the effectiveness of the proposed method.

A Study on the Nonlinear Fuzzy PID Controller with Variable Parameters (가변 파라미터를 갖는 비선형 퍼지 PID 제어기에 관한 연구)

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • This paper proposes a nonlinear fuzzy PID controller with variable parameters to improve slow rising time and divergence occurred by limited input spaces and a resultant limited control input during fuzzification in a fuzzy PID controller with fixed parameters, and describes the design principle and tracking performance of a proposed fuzzy PID controller. The parameters of a proposed controller are adjusted by the stability conditions derived from 'small gain theorem' and satisfy the BIBO stability of overall control system.

Improved Self-tuning Fuzzy PID Controller (향상된 자기동조 퍼지 PID 제어기)

  • Roh, Jae-Sang;Lee, Young-Seog;Suh, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.338-341
    • /
    • 1994
  • This paper presents a Fuzzy-PID controller based on Fuzzy logic. Up to now PID controller has had the difficulty of obtaining the optimal gain, and Fuzzy controller has had the difficulty of determining scale factor affecting the performance of control. So that a Fuzzy-PID controller is presented here self tuning of the scale factor and optimal gain. The results of simulation show a good performance in comparison with Ziegler-Nichols controller, having the generality of determining the components of scale factor in Fuzzy rule.

  • PDF

IMC-PID Controller Design using Loop Shaping Method (루프 형성 기법을 이용한 IMC-PID 제어기 설계)

  • Lim Dong-Kyun;Kim Chang-Hyun;Suh Byung-Suhl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.11-16
    • /
    • 2005
  • This paper proposed a new IMC-PID controller design method using the loop shaping method. By the application of the loop shaping method for IMC-PID controller which has only one design parameter and guarantees internal stability, we can not only consider such design specifications as gain margin, phases margin, and sensitivity functions but also obtain the loop gain by setting up the relationships between design specifications and design parameters. A systematic method to select design parameters of IMC-PID controller in order to meet the design specifications is suggested and its effectiveness is examined by the case study and analysis.

Load Frequency Control Charateristic of 2-Area Power Systems by Optimal PID Controller (최적PID 제어기에 의한 2지역 전력계통 부하주파수 제어특성에 관한 연구)

  • 정형환;이준탁;안병철;김용필;김해재
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.703-710
    • /
    • 1994
  • This paper describes for the applicability of optimal PID controller to the load frequency control of 2-area power systems. The proposed optimal PID controllers are designed by the optimization technique of P.I.D's gain coefficients using the relatively ingeneous simplex method, and we have considered the system sensitivity for the optimal gains and the stable effects of systems to speed regulation changes. This PID controller for load frequency control systems with exciter shows better performances and robustness than conventional tie-line bias controller.

  • PDF

Neural Network PID Controller for Angle and Speed Control of Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 각도 및 속도 제어를 위한 신경회로망 PID 제어기)

  • Kim, Young-Doo;An, Tae-Hee;Jung, Gun-Oo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1871-1880
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum robot, i.e., Segway type robot that is a convenient and easily handled vehicle is designed to have more stable balancing and faster velocity control compared to the conventional method. First, a widely used PID control structure is applied to the two wheeled inverted pendulum robot and proper PID control gains for some specified weights of users are obtained to get accurate balancing and velocity control by use of experimental trial-and-error method. Next, neural network is employed to generate appropriate PID control gains for arbitrarily selected weight. Here the PID gains based on the trial-and-error method are used as training data. Simulation study has been carried out to find that the performance of the designed controller using the neural network is more excellent than the conventional PID controller in terms of faster balancing and velocity control.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System (비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석)

  • Lee, Chul-Heui;Kim, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Simulation-based Education Model for PID Control Learning (PID 제어 학습을 위한 시뮬레이션 기반의 교육 모델)

  • Seo, Hyeon-Ho;Kim, Jae-Woong;Park, Seong-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.286-293
    • /
    • 2022
  • Recently, the importance of elemental technologies constituting smart factories is increasing due to the 4th Industrial Revolution, and simulation is widely used as a tool to learn these technologies. In particular, PID control is an automatic control technique used in various fields, and most of them analyze mathematical models in certain situations or research on application development with built-in controllers. In actual educational environment requires PID simulator training as well as PID control principles. In this paper, we propose a model that enables education and practice of various PID controls through 3D simulation. The proposed model implemented virtual balls and Fan and implemented PID control by configuring a system so that the force can be lifted by the air pressure generated in the Fan. At this time, the height of the ball was expressed in a graph according to each gain value of the PID controller and then compared with the actual system, and through this, satisfactory results sufficiently applicable to the actual class were confirmed. Through the proposed model, it is expected that the rapidly increasing elemental technology of smart factories can be used in various ways in a remote classroom environment.

Control of a Inverted Pendulum Using Fuzzy-PID Controller (퍼지 PID 제어기를 이용한 도립진자 제어)

  • Shin, Ja-Ho;Hong, Dae-Seung;Ryu, Chang-Wan;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.859-861
    • /
    • 1999
  • This paper describes the development of a fuzzy gain scheduling scheme of PID controller for inverted pendulum system. Fuzzy rules and reasoning are utilized on-line to determine the controller parameters based on the error signal and its difference. Simulation results demonstrate that better control performance can be achieved in comparison with PID controller using pole placement to control of a Inverted pendulum.

  • PDF