• Title/Summary/Keyword: PID Feedback

Search Result 274, Processing Time 0.027 seconds

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

Measuring strain on fiber Bragg grating sensors with a linear wavelength sweeping laser (파장 선형 스위핑 레이저를 이용한 광섬유 격자 센서의 스트레인 측정)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.420-428
    • /
    • 2021
  • In this study, linearized sweeping of a wavelength sweeping laser was realized. This technique was used to measure the strain on a fiber Bragg grating(FBG) sensor. For linear sweeping, PID control over the wavelength difference between linear and nonlinear sweeping was employed. The performance test showed that linear sweeping with a 46 nm range and a 1 kHz frequency held up well with a 99.5 % decrement in nonlinearity after the 120th feedback. When attached to a strain gage, the FBG sensor registered strain that matched the data sheet within a difference of 4.5[με]. Altogether, linear sweeping can play a leading role in monitoring a safety of large SOC structures as well as in other wavelength sweeping laser related fields.

Linearizing and Control of a Three-phase Photovoltaic System with Feedback Method and Intelligent Control in State-Space

  • Louzazni, Mohamed;Aroudam, Elhassan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.297-304
    • /
    • 2014
  • Due to the nonlinearity and complexity of the three-phase photovoltaic inverter, we propose an intelligent control based on fuzzy logic and the classical proportional-integral-derivative. The feedback linearization method is applied to cancel the nonlinearities, and transform the dynamic system into a simple and linear subsystem. The system is transformed from abc frame to dq0 synchronous frame, to simplify the state feedback linearization law, and make the close-loop dynamics in the equivalent linear model. The controls improve the dynamic response, efficiency and stability of the three-phase photovoltaic grid system, under variable temperature, solar intensity, and load. The intelligent control of the nonlinear characteristic of the photovoltaic automatically varies the coefficients $K_p$, $K_i$, and $K_d$ under variable temperature and irradiation, and eliminates the oscillation. The simulation results show the advantages of the proposed intelligent control in terms of the correctness, stability, and maintenance of its response, which from many aspects is better than that of the PID controller.

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

Decentralized Adaptive Controller Design for Manipulators (매니퓰레이터의 비집중 적응 제어기 설계)

  • Lyou, Joon;Hwang, Suk-Young
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.31-35
    • /
    • 1992
  • This paper presents a decentralized adaptive controller design for a robot manipulator to track the given desired trajectory in the joint space. The controller is of distributed structure and does not require the complex manipulator dynamic model, thereby it is computationally very efficient. Each joint is independently controlled by a PID feedback part and a velocity-acceleration feedforward part. Simulation results for a two-link direct drive manipulator conform that the proposed decentralized scheme is feasible.

  • PDF

An Investigative Study on EPC Theory Development (EPC 이론적 전개에 관한 조사연구)

  • 김종걸;정해운
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.349-356
    • /
    • 2000
  • EPC(Engineering process control) is usually applied to processes in which successive observations ate related over time and where the mean drifts dynamically. This paper aims to literature surrey concerned about EPC theory developments and their applications including macGregor model as Basic EPC model, feedback controllers, feedforward controllers, run-to-run controllers, MMSE controllers, PID model and PI adjustment model and so on. We suggest some perspective area for further study.

  • PDF

A Study on the Hybrid Position Control of the Liquid-Slop System (Liquid-Slop 시스템의 하이브리드제어에 관한 연구)

  • Ju, Hae-Ho;Lee, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.58-64
    • /
    • 1992
  • 이 논문에서는 Hoop속에 Ball이 구르는 간단한 전기 기계 구동 장치를 고려 하였다. 이 장치의 구조는 간단하지만 원유수송선과 같은 대형 액체를 고속 수송할 때 발생되는 "liquid slop"문제를 해석하고 제어하는데 좋은 모델이 된다. 본 연구에서는 liquid slop dynamics를 언급 하였고, 이러한 시스템을 제어 하기 위하여 재래식 PID, state-feedback 알고리즘의 유용성을 검토하였고 하이브리드 제어방식을 제안하였다. 하이브리드 제어방식이 다른방식보다 성능면에서 다소 우세함을 알 수 있었다.을 알 수 있었다.

  • PDF

The Level Control System Design of the Nuclear Steam Generator for Robustness and Performance

  • Lee, Yoon-Joon;Lee, Heon-Ju;Kim, Kyung-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.157-168
    • /
    • 2000
  • The nuclear steam generator level control system is designed by robust control methods. The feedwater controller is designed by three methods of the H$\infty$, the mixed weight sensitivity and the structured singular value. Then the controller located on the feedback loop of the level control system is designed. For the system performance, the controller of simple PID whose coefficients vary with the power is selected. The simulations show that the system has a good performance with proper stability margins.

  • PDF

Vibration Control of A CPM Maglev System (CPM형 자기부상의 진동제어)

  • Kim Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1001-1003
    • /
    • 2004
  • In this paper, the vibration control of CPM(Controlled-Permanent Magnet) type magnetic levitation system of 1ton is designed and implemented. The target to be controlled has 8 magnets and 4 corners of the maglev module are levitated using a digital feedback controller. The designed controller includes PID type gap controller and speed observer. Its performance is validated by some kinds of experiments.

  • PDF