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A Study on the Hybrid Position Control of the Liquid-Slop System
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1. INTRODUCTION

One of the consequences of the trend toward
the high speed transportation of bulk liquids is
that the infleunce of the cargo upon the vehicle
must fully accounted for. This has always been
true in the static sense, but in recent years
the dynamical interaction between the material
being transported and its container has grown
in importance. In fact, the behaviour of a ve-
hicle during a manoeuvre is very often a joint
function of liquid cargo and vehicle dynamics.
This problem, referred to colloquially as ‘“liquid
slop”, is known to be a problem in high speed
road and rail transport of bulk liquids, maritime
transpotation especially in oil tankers, and liquid
fuelled missiles, etc.

Any arrangement which involves the rapid
movement of large quantities of fluid and an
oscillating load such as a moving crane or body
of liquid can exhibit the characteristic oscillations
which are associated with ‘liquid slop”. The
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dynamical behaviour of liquid slop is recognized
as causing control problem in a wide range of
applications'".

The initial purpose of this paper
describes that the ball and hoop system
demonstrates the phenomenon of fuel slosh in
liquid-fuelled missiles and to research dynamics
slop quenching techniques. This system is
extremly rich in dynamics in a manner which
allows simple physical demonstration of complex
transimission zeros,
behaviour, pole and zero assignments.

In paticular, if a cylindrical vessel is
considered, then to a first approximation, the
essential dynamical character of liquid movement
in the cylinder (Fig.1 a) is captured by the
motion of a body rolling inside a hoop (Fig.!
b}). The vehicle motion is introduced by allowing
the hoop to rotate under the action of a direct
drive servo-motor, while the liquid motion is
modeled by the oscillation of a ball rolling in
the inner periphery of the hoop.

is to

nonminimum phase
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Fig. 1 Principle of Liquid Slop Simulation

In the design of dynamic system, the major
concern is to obtain the most desirable response
to a given input. In the case of DC motor

regulating system, the objective is for the
system always to be maintained at its
equilibrium state. When subjected to a

disturbance the system is expected to return to
its equilibrium state as quickly and as smoothly
as possible.

Last part of this paper shows the ball and
hoop operating as feedback control system with
the aim of actively quenching ball oscillations
during hoop angular position manoeuvres by
using a hybrid control algorithm.

2. SYSTEM MODELLING '

Consider Fig.2 which shows a ball and hoop
system with the relevant variable annotated.
Assume that hoop is driven by a pure torque
source T(t) and that the coordinates which
define the dynamical behavior of the system are
6 and y, where @ is the angular position of
the hoop with respect to a datum point A and
y is the postion of the ball on the inner pe-
riphery of the hoop, measured with respect to
the datum point A, respectively.

In the figure, ¢ represents the slop angle of
the ball, R and r are the radius of the hoop
and the rolling radius of the ball (recall that
the disk inner periphery may be grooved to act
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as a guide for the ball), V is the liner velocity
of the ball, and ¢ is the angular rotation of
the ball, respectively.

Hoop

Ball
rodius r

Fig.2 Ball and Hoop Model

Cleary y and € completely and independently
specify the system motion and can be used as
generalized coordinates in a variational model
of the ball and hoop system. The system La-
grangian is

L = [1a{6)2 + Ibip)2 + mv2] / 2 (1)

Rewriting in terms of the generalised coordinates
we have

L = (La(0)2 + In(y/r)2

+ m{CR - r)(6 - y/R)2} 7 2 (2)

where I. is the moment of inertia of the hoop:l
» moment of inertia of the ball; and m, mass
of the ball. In addition, the system co-content
J is associated with the rolling friction
coefficient of the ball(b.) and the rotational
coefficient of the motor assembly(b).

Thus

J = [bely/r)2 + bu(6)2] / 2 (3)

The generalised inputs are, for coordinate 8,
the torque T,(t) given by

To(t) = T(t) - ag{ ax / a6) (4)

where x is the vertical displacement of the
ball given by
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x = (R - r)(1 - cos(8-y/R)) (5)

Hence the Lagrange's equation for the 6
coordinate is

3L
L]

aJ
- = To(t)
a0

d {_a‘- ] -
dt ' g0

Lagrange's equation for the y coordinate is
al aJ
2, 9
ay ay

= Fy(t)

L2y - (7)

“dt ay
where Fy(t) is the generalised force given by

Fy(t) = mg(ax / ay)

{(mg(R - r)/R)sin(@ - y/R) (8)
Thus, the following equations of motion for
the ball and hoop arise :

[IJ’N(R'F)Z].G-* bad - (m(R-r)z/R);'.

= T(t)-ng(R-r)sin(6-y/R) (9)

[Ib/r2+m(R-r)2]y+(bb/r? )y-(n(R-r)2/R}0

=(mg(R-r)/R)sin(6 - y/R) (10)

Equations (9) and (10) describe the motion of
the ball and hoop in full. The equation can
be simplified in any one of a number of ways.
First, if the ball has relatively small mass
compared with 1., then Eq. (9) becomes that of

an inertial load 1. with viscous damping b.,
driven by the input torque TI(t).
Thus

126 + bad = T(t) (11)

Eq. (10) can be linearized by assuming that the
angle (6-y/R) is relatively small giving
[Io/mr2 + ((R - r)/R)2]y + (bu/mr2)y +
(8(R - £)/R2)y = ((R - r)2/R)0 +
(g(R - r)/R)O (12)
Further simplification occurs in the coefficients
without altering the dynamical structure if the
subtituting the following relations is made :

I,=2mrb'/5, R> r, rb=r
is radius of the ball
(12) becomes

where 1.
With these alterations

(7/5).y.* (bb/mr‘z);' + (g/R)y

= R(§ + (z/R)6) (13)

(6)
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Taken together (11) and (13) are linearized,
decoupled equations of motion, and have the
transfer function block diagram representation
of Fig.3(a). An alternative formulation for the
equation of motion takes the angles @ and ¢
as coorinates, where ¢ is the slop angle and
replaces the variable y as the system output.
For dynamical analysis and control studies of
fluid slop, ¢ is the relevent output to consider.
Substituting for y in (13) from the relation
Y=R(8—¢) gives

(7/5)p + (bu/mr2)d + (g/R) &

= (2/5)0 + (bb/mr?)e (14)

The transfer function form of Eq.(14) is
presented in Fig.3(b).

The interesting equation is Eq. (14) since this
contains the oscillatory modes of ¢ which are
associated with liquid slop. These transfer
functions are utilized to slop quenching control
problem.

T(s) 1
s(lg +bm)

8(s) | R%+g/0)
i (7/5)82+(by /mri)s+g/r

(o) y(s) as output

8(s)

y(s)

T(s) 6(s)

3
s(lg +bm)

(2/5)(s+50y/2mr )s
(7/5)s2 +(by, /mré)s+g/R

e(s) ¥(s)

(b) ¥(s) as output

Fig.3 Transfer Function Block Diagram

3. CONTROL ALGORITHMS

Most DC servo motor drives are operated as
closed-loop position control system. Generally,
external position loop and an internal current
loop are the most commom feedback techniques.
A simple proportional gain in the position loop
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may not be sufficient to provide a precise
control. This may result in a high overshoot
and also an undesirable steady-state error in
position. Therefore some kind of compensation
technique has to be employed to improve the
performance of the control. In this paper, a
hybrid control scheme is proposed. For the
purpose of comparison, three control algorithms
are considered: the classical PID control
algorithm, the state feedback algorithm, and the
hybrid control (PID+state feedback) algorithm,
Static and dynamic performance of three control
schemes are studied in terms of system time
specification. Computer simulation results
obtained from the ball-hoop system using the
control schemes described below are given and
discussed. The transfer fuctions of the ball-hoop
system are given in the Fig.3.

3.1 PID Control

The PID control algorithm is widelly used in
industrial systems of any order, even in plants
whose transfer function has been completely
defined. Practical design reasons dictate the use
of a low-pass filter to eliminate undesirable
frequency noise. In this case, the mathematical
model of the PID control algorithm becomes

Ge(s) = K[1/Ti*s+(1+Tass)/(1+a*Tass)] (15)

where K represents the proportional gain, T,
is the derivative time, T. is the integarl time,
and a is the tameness constant.

Tuning should be.done with respect to the
process model. For processes modelled by a
plant delay with an integration, Zeigler and
Nichos1{1942) have derived direct formulas giving
the values of K, T;, T. that minimize the
performance index.

Using the frequency-domain approach, E polak
and D.Q.Mayne” have solved the tuning prob-
lem and then Z.S.Wang and A.Seireg'
proposed a method which is based on a time-
domain formulation. The method is deduced
from analytically integrating the quadratic func-
tion by using the modal matrix. However the
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parameter optimization of control systems has
not been as fully explored yet.

In this study the parameters of PID controller
were evaluated in the time-domain approach.
The results are K=3000, T.=10, T.,=0.03, a=
0.1

3.2 State-Feedback Control

According to optimal control theory'’, the
objectives of the control of dynamic systems
can be achiveed by implementing an optimal
control law through a state-variable feedback
controller. That is, for a given dynamic system

x(t) = [Alx(t)+[Blu(t) x(0) = %o (16)

y(t) = [Clx(t) (17)
find a control vector

u(t) = ~[K)x(t) (18)

that minimizes a quadratic integral performance
index

I=r337(t)[Q]z(t)+gT(t)[R]g(t)}dt (19)

where x(t)ER™ is a state vector. ul(t)&R™ is
a control vector; y(t)ER' is an output vector.
(A) is an n x n state matrix; (B) is an n
x m input matrix; (C) is an 1 x n output
matrix; (K) is an m x n feedback matrix; and
(Q) is an n x n weighting matrix for the state
vector x{t}), which is symmetric semi-definite.
(R) is an m x n weighting matrix for the
control vector uf(t), which is symmetric and
positive definite. It is well known that if all

the states are accessible, the optimal control

is given by
ult) = -[klx(t) (20)
where
[k] = -[R]-![BIT[P] (21)

where (P) is an n x n positive definite
symmetric matrix, which can be obtained from
solving the algebraic Riccati matrix equation
[A]JT(P}+[P][A]-[P][B][R]-1[B]T[P]
= -[Q] (22)
Once (P) is obtained, [ﬁ] can be analytically
determined from Eq. (21).
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[ﬁ] is the optimized state-feedback gain
matrix.

In the Ball-Hoop system,
are represented as follows;

the state matrices

-1.333 0 0 0

=l 0 0 0 |
| 0 86.667 -1.2 -112 |
— 0 0 1 0 —,

(BIT=[10 0 01,

[CIT=[00 0 241,

XT=06066d¢¢) y =0

where 9,0 are the hoop angular velocity and

position, respectively and g/},¢ are the bll slop

angular velocity and position, respectively.
When the weighting matrix (Q] and (R)

corresponding to x(t} are given as

- 1000 0 0 9
ol = 0 1000 0 0
|_ 0 0 1 0
0 0 0 1 -,
1 0 0 0-—
[R]={_o 1 0 0
L0010
“0 0 0 11—,

can be determined és follows:

(K]
KIT = [ 31.33 32.44 -0.02 -1.04 ]

(K) con be determined as follows :
(K)7'=(31.33 32.44 -0.02 -1.04)

The major difficulty of solving optimal pa-
rameter problem for the state feedback control
is predescribing the weighting matrices (Q) and
(R). In this system hoop angle(f) and angular
velocity (é) are weighed much more than the
other states by the trail-and-error investigation.

3.3 Hybrid Control

This hybrid control means combination of PID
and state-feedback control. The block diagram
of a hybrid control system is depicted in Fig. 4.

4, COMPUTER SIMULATION

A number of general purpose simulation
packages, ie, MATLAB, CC, TUTSIM,
SIMNON, etc, exist today which will handle a

wide variety of control problems. Hovever, their
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Fig.4 A Hybrid Control Block Diagram For The
Ball-Hoop System

generality leads to some inefficiency and dif-
ficulty in using them. TUTSIM® is a simulation
program for engineering design and optimization
of continuous dynamic systems. This TUTSIM
is a block diagram oriented simulation language.
It has the convenience of the analog computer
and the speed and accuracy of the digital
computer. Since the program can be coded in
the form of the block diagram, each state of
the dynamic system can be calculated. The
other programs are difficult to do it. Thus, in
this study the time responses of the control
variable (T), the hoop position (f) and ball slop
position (¢) are simulated by the TUTSIM. The
simulation block diagram of a hybrid control
system is shown in Fig.5. In the figure, each
block respresents a mathematical operation.

[2

Fgi.5 TUTSIM Block Diagram For Simulation
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TUTSIM block diagrams may be written from
the equations term by term, or sometimes by
direct inspection of the real system. It is one
of the advantages of the TUTSIM program.

5. RESULTS AND DISCUSSION

Fig. 6 represents the impulse response of open
-loop control system when the system is
subjected to impluse distrubance. In Fig.8,
curve 1 represents the hoop angle in radians
and curve 2 is the ball slop angle in radians.
As it is shown, the ball is oscillating with the
frequency of 1.33 Hz.
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Fig.6 Impulse Response of Open-Loop System

In order to reduce the oscillatory motion, we
should apply a control law to the system. When
the PID control algorithm is utilized to the ball-
hoop system, the impluse response of the
system is represented as Fig.7. In the figure
curve 1 indicates the control variable (torque),
curve 2 represents the hoop angle, and curve
3 is the ball angle.

63

(1992.124)

Fig.7 shows that the amplitude of oscillatory
motion of the ball slop angle(curve 3) is
drastically reduced compared to the open-loop
system but the oscillation is still remained.

Fig.8 shows the impluse response of the
system by using the state feedback control
algorithm. The oscillating motion of the ball
slop angle is damped out significantly, and the
amplitude of the first peak becomes smaller
than the one of PID case. Therefor, it is said
that the state feedback algorithm performs
better than the PID in general.

Finally the hybrid control algorithm is applied
to the system. The impluse response of the
system is depicted in Fig.9. It shows that the
settling time of the ball slop angle by the
hybrid control algorithm is faster than the state
feedback algorithm, and the peak amplitude is
also reduced more than the others. When
suddenly the disturbance occurs to the hoop,
the ball should be settled down as soon as
possible in some sense. For this requirement,
it 1s said that the hybrid control algorithm would
be better.
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Fig. 7 Impulse Respons of PID Control System



FHE - o]AY

13:Ball fingle
8.5888688 | A ' ' ' '

B.4400008 | | \
8.7080688 ||
8. 200060 |
8.2688888
3.2298908

ey
-

8. 1480099
3.30888068

-

#.32998988

-3.3488088 |

-5.080808 U .
108 Ui 1.

Fig.8 Impulse Respons of State Feédback
Control System
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Fig. 9 Impulse Respons of Hybrid Control System

6. CONCLUSION

This study has described the dynamics and
control of a liquid slop problem. The action
of the ball rolling on the hoop inner periphery
is presented as a liquid slop sumulator,

To reduce the undesirable chattering motion
of the ball subjected to the impulse disterbance,
the conventional control algorithms such as PID
and state-feedback were applied to the system.
Finally the proposed hybrid control algoritm has
been compared with the conventional algorithms.

The results by TUTSIM simulation shows that
the proposed hybrid control acts much better
than the others. Even if the hybrid control
performs satisfactory in simulation, the
implementation would be faced to difficulty. This
is so because the hybrid control action requires
too much torque to drive the motor at the initial
stage(Fig.9). Therefor, further investigation
study will be carried out using LQG/LTR method
for the easy implementation.
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