• 제목/요약/키워드: PID(proportional intergral derivative)

검색결과 5건 처리시간 0.021초

자기조정 퍼지 PID제어기를 이용한 전력시스템의 부하주파수 제어 (Load Frequency Control of Power System using a Self-tuning Fuzzy PID Controller)

  • 이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 1999
  • A self-tuning FPID(Fuzzy Proportional Intergral Derivative) controller fo load frequency control of 2-area power systemis proposed in this paper. The paramters of the proposed self-tuning FPID controller are self-tuned by the proposed fuzzy inference technique. Therefore in this paper the fuzzy inference technique of PID gains using PSGM(Product Sum Gravity Method) is presented and is applied to the load frequency control of 2-area power system. The computer simulation results show that the proposed controller give better more control characteristics than convention-al PID, FLC under load changes.

  • PDF

PID출력귀환 제어기의 변수조정에 관한 연구 (A study on the Parameter Regulation of PID Output Feedback Controllers)

  • 성원기;최종수;하용수
    • 한국통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.184-192
    • /
    • 1985
  • 三項出力歸還 制御器의 파라미터調整을 컴퓨터模擬實驗에 의해 時間領域解析과 最適値를 活用할 수 있게 하였다. 正常狀態應答, 外亂無視, 過渡應答遂行을 效率的으로 選擇될 수 있는 PID制御器의 設計를 汎用例에 의하여 考察하였다. 이에 의해 sensor base system構成圖를 또한 提示한다.

  • PDF

Rhino XR-2 로보트의 퍼지 혼성 제어 (Fuzzy Hybrid Control of Rhino XR-2 Robot)

  • 변대열;성홍석;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.299-303
    • /
    • 1993
  • There can be two methods in control systems: one is to use a linear controller, the other is to use a nonlinear controller. The PID controller and the fuzzy controller can be said to belong the linear and the nonlinear controller respectively. In this paper, a new hybrid controller which is consist of the linear PID controller of which the gain is tuned and the nonlinear self tuning fuzzy controller is proposed. In the PID controller, an algorithm which parameterizes the proportional, the intergral, and the derivative gain as a single parameter is used to improve the performance of the PID controller. In the self tuning fuzzy controller, an algorithm which changes the shape of the triangle membership function and changes the scaling factor which is multiplied to the error and the error change. The evaluation of the performance of the suggested algorithm is carried on by the simulation for the Rhino XH-2 robot manipulator with 5 links revolute joints.

  • PDF

오차 자기순환 신경회로망에 기초한 적응 PID제어기 (Adaptive PID controller based on error self-recurrent neural networks)

  • 이창구;신동용
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

단조공정 트리밍작업 자동화를 위한 병진관절을 갖는 7축 다관절 로봇의 최적 작업경로제어에 관한 연구 (A Study on Optimal Working Path Control of Seven Axes Vertical Type Robot with Translation Joint for Triming Working Automation in Forming Process)

  • 김민성;최민혁;배호영;임오득;강정석;한성현
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.53-62
    • /
    • 2018
  • This study propose a new approach to control the optimal working path of vertical type articulated robot with translation joint for trimming working process automation in forging manufacturing process. The basic structure of the proposed robotic joints controller consists of a Proportional-Intergral controller and a Proportional-Derivative controller in parallel. The proposed control scheme takes advantage of the properties of the fuzzy PID controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator. The results illustrates that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. The reliability is varified by simulation test for vertical type s articulated robot with seven joints including one trqanslation joint.