• Title/Summary/Keyword: PI3K/Akt/mTOR

Search Result 62, Processing Time 0.027 seconds

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.

Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 AKT/mTOR/GSK-3β 신호경로 조절을 통한 벌 사상자 추출물(CME)의 apoptosis 및 cell cycle arrest 효과)

  • Lim, Eun Gyeong;Kim, Guen Tae;Kim, Bo Min;Kim, Eun Ji;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.663-672
    • /
    • 2016
  • The Cnidium monnieri (L.) Cusson is an annual plant distributed in China and Korea. The fruit of C. monnieri is used as a medicinal herb that is effective for the treatment of carbuncle and pain in female genitalia. However, the anti-cancer effects of CME have not yet been reported. In this study, we assessed the apoptotic effects and cell cycle arrest effects of ethanol extracts from C. monnieri on HCT116 colon cancer cells. The results of an MTT assay and LDH assay demonstrated a decrease in cell viability and the cytotoxic effects of CME. In addition, the number of apoptotic body and the apoptotic rate were increased in a dose-dependent manner through Hoechst 33342 staining and Annexin V-PI double staining. In addition, cell cycle arrest occurred at the G1 phase by CME. Protein kinase B (Akt) plays an important role in cancer cell survival, growth, and division. Akt down-regulates apoptosis-mediated proteins, such as mammalian target of rapamycin (mTOR), p53, and Glycogen Synthase kinase-3β (GSK-3β). CME could regulate the expression levels of p-Akt, p-mTOR, p-GSK-3β, Bcl-2 family members, caspase-3, and PARP. Furthermore, treatment with CME, LY294002 (PI3K/Akt inhibitor), BIO (GSK-3β inhibitor), and Rapamycin (mTOR inhibitor) showed that apoptotic effects occurred through the regulation of the AKT/mTOR/GSK-3β signaling pathway. Our results demonstrated CME could induce apoptosis and cell cycle arrest in HCT116 colon cancer cells.

Involvement of Multiple Signaling Molecules in Peptidoglycan-induced Expression of Interleukin-1α in THP-1 Monocytes/Macrophages (THP-1 단핵구의 펩티도글리칸 유래 인터루킨-1 알파 발현에서 TLR2, PI3K/Akt/mTOR, MAPKs의 역할)

  • Heo, Weon;Son, Yonghae;Cho, Hyok-rae;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.421-429
    • /
    • 2022
  • The expression of interleukin-1α (IL-1α) is elevated in monocytic cells, such as monocytes and macro-phages, within atherosclerotic arteries, yet the cellular molecules involved in cytokine upregulation remain unclear. Because peptidoglycan (PG), a major component of gram-positive bacterial cell walls, is detected within the inflammatory cell-rich regions of atheromatous plaques, it was investigated if PG contributes to IL-1α expression in monocytes/macrophages. Exposure of THP-1 monocytic cells to PG resulted in elevated levels of IL-1α gene transcripts and increased secretion of IL-1α protein. The transcription and secretion of IL-1α were abrogated by OxPAPC, an inhibitor of TLR2/4, but not by polymyxin B that inhibits lipopolysaccharide-induced TLR4 activation. To understand the molecular mechanisms of the inflammatory responses due to bacterial pathogen-associated molecular patterns (PAMPs) in diseased arteries, we attempted to determine the cellular factors involved in the PG-induced upregulation of IL-1α expression. Pharmacological inhibition of cell signaling pathways with LY294002 (a PI3K inhibitor), Akti IV (an inhibitor of Akt activation), rapamycin (an mTOR inhibitor), U0126 (a MEK inhibitor), SB202190 (a p38 MAPK inhibitor), SP6001250 (a JNK inhibitor), and DPI (a NOX inhibitor) also significantly attenuated the PG-mediated expression of IL-1α. These results suggest that PG induces the monocytic or macrophagic expression of IL-1α, thereby contributing to vascular inflammation, via multiple signaling molecules, including TLR2, PI3K/Akt/mTOR, and MAPKs.

Baicalin Induces Apoptosis in Leukemia HL-60/ADR Cells via Possible Down-regulation of the PI3K/Akt Signaling Pathway

  • Zheng, Jing;Hu, Jian-Da;Chen, Ying-Yu;Chen, Bu-Yuan;Huang, Yi;Zheng, Zhi Hong;Liu, Ting-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1119-1124
    • /
    • 2012
  • Background: The effect and possible mechanism of traditional Chinese medicine, baicalin, on the PI3K/Akt signaling pathway in drug-resistant human myeloid leukemia HL-60/ADR cells have been investigated in this current study. Methods: HL-60/ADR cells were treated by 20, 40, $80\;{\mu}mol/L$ baicalin followed by cell cycle analysis at 24h. The mRNA expression level of the apoptosis related gene, Bcl-2 and bad, were measured by RT-PCR on cells treated with $80\;{\mu}mol/L$ baicalin at 12, 24 and 48hr. Western blot was performed to detect the changes in the expression of the proteins related to HL-60/ADR cell apoptosis and the signaling pathway before and after baicalin treatment, including Bcl-2, PARP, Bad, Caspase 3, Akt, p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR. Results: Sub-G1 peak of HL-60/ADR cells appeared 24 h after $20\;{\mu}mol/L$ baicalin treatment, and the ratio increased as baicalin concentration increased. Cell cycle analysis showed 44.9% G0/G1 phase cells 24 h after baicalin treatment compared to 39.6% in the control group. Cells treated with $80\;{\mu}mol/L$ baicalin displayed a trend in decreasing of Bcl-2 mRNA expression over time. Expression level of the Bcl-2 and PARP proteins decreased significantly while that of the PARP, Caspase-3, and Bad proteins gradually increased. No significant difference in Akt expression was observed between treated and the control groups. However, the expression levels of p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR decreased significantly in a time-dependent manner. Conclusions: We conclude that baicalin may induce HL-60/ADR cell apoptosis through the PI3K/AKT signaling pathway.

β-Elemene Induces Apoptosis in Human Renal-cell Carcinoma 786-0 Cells through Inhibition of MAPK/ERK and PI3K/Akt/mTOR Signalling Pathways

  • Zhan, Yun-Hong;Liu, Jing;Qu, Xiu-Juan;Hou, Ke-Zuo;Wang, Ke-Feng;Liu, Yun-Peng;Wu, Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2739-2744
    • /
    • 2012
  • Background: Renal-cell carcinoma (RCC) is resistant to almost all chemotherapeutics and radiation therapy. ${\beta}$-Elemene, a promising anticancer drug extracted from a traditional Chinese medicine, has been shown to be effective against various tumors. In the present study, anti-tumor effects on RCC cells and the involved mechanisms were investigated. Methods: Human RCC 786-0 cells were treated with different concentrations of ${\beta}$-elemene, and cell viability and apoptosis were measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry, respectively. Protein expression was assayed by western blotting. Autophagy was evaluated by transmission electron microscopy. Results: ${\beta}$-Elemene inhibited the viability of 786-0 cells in a dose- and time-dependent manner. The anti-tumor effect was associated with induction of apoptosis. Further study showed that ${\beta}$-elemene inhibited the MAPK/ERK as well as PI3K/Akt/mTOR signalling pathways. Moreover, robust autophagy was observed in cells treated with ${\beta}$-elemene. Combined treatment of ${\beta}$-elemene with autophagy inhibitors 3-methyladenine or chlorochine significantly enhanced the anti-tumor effects. Conclusions: Our data provide first evidence that ${\beta}$-elemene can inhibit the proliferation of RCC 786-0 cells by inducing apoptosis as well as protective autophagy. The anti-tumor effect was associated with the inhibition of MAPK/ERK and PI3K/Akt/mTOR signalling pathway. Inhibition of autophagy might be a useful way to enhance the anti-tumor effect of ${\beta}$-elemene on 786-0 cells.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

Induction of Apoptosis by Treatment of Human Prostate Cancer LNCaP Cells with Methanol Fractions from Prunus mume (매실(Prunus mume) 메탄올 분획물의 처리에 따른 인체 전립선암세포 LNCaP의 apoptosis 유도 효과)

  • Kim, Hwi-gon;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 2021
  • This study examined the growth inhibitory effect of the methanol fraction of maesil (Prunus mume) extract (MMF) on LNCaP, PC-3, and RC-58T human prostate cancer cell lines. Among these cell lines, LNCaP was the most sensitive to the inhibitory effects of MMF. Observation of the morphology and apoptotic body formation in the LNCaP cells revealed morphological changes, nuclear damage, and condensation in response to MMF treatment. The suppressive effect of MMF was related to the intrinsic apoptosis pathway, as indicated by increased expression of the pro-apoptotic proteins Bax, capase-3, capase-9, and PARP and decreased expression of the anti-apoptotic protein Bcl-2. Combined treatment with MMF and the AIF inhibitor N-phenylmalemide (N-PM) indicated that MMF treatment alone had a significant growth suppression effect. The involvement of the extrinsic apoptosis pathway was also confirmed by increased expression of AIF and Endo G. The growth suppression effect of MMF was also significant when compared to the effects of a combination of the PI3K inhibitor LY294002 and MMF. The reduced expression of PI3K, p-Akt, and p-mTOR confirmed the involvement of the PI3K/Akt/ mTOR signaling pathway in regulating the anti-proliferative properties of MMF. In conclusion, the growth suppression effect of MMF in the LNCaP human prostate cancer cell line shows the possibility of using this natural product in functional foods.

Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells (Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.764-771
    • /
    • 2016
  • Extracts from Artemisia annua Linné (AAE) have been known to possess various functions, including anti-bacterial, anti-virus, and anti-oxidant effects. However, the mechanism of those effects of AAE is not well-known. The aim of this study was to analyze the inhibitory effects of AAE on cell proliferation of the human hepatoma cell line (Hep3B) and to examine its effects on apoptosis. Activation by phosphorylation of Akt is cell proliferation through the phosphorylation of TSC2, mTOR, and GSK-3β. We suggested that AAE may exert cancer cell apoptosis through Akt/mTOR/GSK-3β signal pathways and mitochondria-mediated apoptotic proteins. For this, we examined the effects of extracts of AAE on cell proliferation according to treatment concentration. Treatment with AAE not only reduced cell viability, but also resulted in the induced release of lactate dehydrogenase (LDH). These results were determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay. Furthermore, we determined the effects of apoptosis through Hoechst 33342 staining, annexinⅤ-propidium iodide (PI) staining, 5,5′, 6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting. Our study showed that the treatment of liver cancer cells with AAE resulted in the inhibition of Akt, TSC2, GSK-3β-phosphorylated, Bcl-2, and pro-caspase 3 and the activation of Bim, Bax, Bak, and cleaved PARP expressions. These results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulate of Akt/mTOR/GSK-3β signaling pathways.

N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons

  • Yang, Seung-Ju;Han, A Reum;Choi, Hye-Rim;Hwang, Kyouk;Kim, Eun-A;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.527-532
    • /
    • 2020
  • We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.

Blockage of Autophagy Rescues the Dual PI3K/mTOR Inhibitor BEZ235-induced Growth Inhibition of Colorectal Cancer Cells

  • Oh, Iljoong;Cho, Hyunchul;Lee, Yonghoon;Cheon, Minseok;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Molecular targeting for the altered signaling pathways has been proven to be effective for the treatment of many types of human cancer, including colorectal cancer (CRC). The dual phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 has shown to exhibit potent antitumor activity against solid tumors. Autophagy is a cellular lysosomal catabolic process to maintain metabolic homeostasis, which has been known to be induced in response to many therapeutic agents in cancer cells. This process is negatively regulated by mTOR and often acts as prosurvival or prodeath mechanism following cancer therapeutics. The current study was designed to investigate the antiproliferation activity of BEZ235 and to evaluate the role of autophagy induced by BEZ235 using HCT15 CRC cells bearing ras oncogene mutation. We found that BEZ235 decreases cell viability, which was mostly dependent on $G_1$ arrest of cell cycle via suppression of cyclin A expression. BEZ235 affects PI3K/Akt/mTOR signaling pathway by increasing the phosphorylation of AKT at $Ser^{473}$ and RAS/RAF/MEK/ERK pathway by decreasing the phosphorylation of ERK at $Tyr^{204}$. BEZ235 also stimulated autophagy induction as evidenced by the increased expression of LC3-II and abundant acidic vesicular organelles (AVOs) in the cytoplasm. In addition, the combination of BEZ235 with autophagy inhibitor chloroquine, a known antagonist of autophagy, counteracted the antiproliferation effect of BEZ235. Thus, our study indicates that autophagy induced in response to BEZ235 treatment appears to act as cell death mechanism in HCT15 CRC cells.