• Title/Summary/Keyword: PI3K/AKT

Search Result 398, Processing Time 0.028 seconds

Inhibition of the interaction between Hippo/YAP and Akt signaling with ursolic acid and 3'3-diindolylmethane suppresses esophageal cancer tumorigenesis

  • Ruo Yu Meng;Cong Shan Li;Dan Hu;Soon-Gu Kwon;Hua Jin;Ok Hee Chai;Ju-Seog Lee;Soo Mi Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.493-511
    • /
    • 2023
  • Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

Effect of Treadmill Exercise on Modulation of Vascular Endothelial Growth Factor Expression in the Retina of Diabetic Rats (당뇨유발 흰쥐에서 트레드밀 운동이 망막의 혈관내피성장인자 발현에 미치는 영향)

  • Kim, Dae-Young;Kim, Tae-Woon;Kim, Chang-Ju;Jung, Sun-Young
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.3
    • /
    • pp.363-372
    • /
    • 2012
  • One of the major ocular complications of diabetes mellitus(DM) is retinopathy, which is characterized by increased neovascularization and neural degeneration in the retina. In the present study, we investigated the effects of treadmill exercise on retinopathy in the rats with DM. Thirty-two male Sprague-Dawley rats were divided into four groups(n = 8 in each group): control group, exercise group, DM-induction group, and DM-induction and exercise group. DM was induced by intraperitoneal injection of streptozotocin. The rats in the exercise groups were made to run on the treadmill for 30 min five times per a week, during 12 weeks. The expressions of phosphoinositide 3-kinase(PI3K), phospho-protein kinase B(pAkt), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor(VEGF) in the retina were determined using western blot analysis and immunohistochemistry. In the present results, the expressions of PI3K, pAkt, HIF-1α, and VEGF in the retina of the diabetic rats were increased. Treadmill exercise suppressed HIF-1α and VEGF expressions through inhibition of PI3K/pAkt pathway in the diabetic rats. These results suggest that treadmill exercise may ameliorate the progression of diabetes-induced retinopathy by inhibiting neovascularization in the retina.

Honokiol Inhibits Nitric Oxide-Induced Apoptosis in Rabbit Articular Chondrocytes via PI-3K/AKT Pathway (Honokiol에 의한 토끼의 무릎 연골세포에서 PI-3K/AKT pathway를 통하여 nitric oxide에 의해 유도되는 세포사멸의 억제)

  • Lee, Won-Kil;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1443-1450
    • /
    • 2010
  • Honokiol is a small molecular weight ligand originally isolated from the Chinese medicinal herb Magnolia officinalis, a plant used in traditional Chinese and Japanese medicine [9]. In a previous study, the effects of honokiol were shown to have anti-angiogenic, anti-invasive and anti-proliferative activities in a variety of cancers [1,3,4,11,13,17,24,29,30]. We showed previously that direct production of nitric oxide (NO) by treatment of NO donor, sodium nitroprusside (SNP), led to apoptosis in rabbit articular chondrocytes [15,16]. This study confirmed that NO-induced apoptosis was suppressed by honokiol treatment in a dose-dependent manner as determined by cell phenotype, MTT assay, Western blot analysis and FACS analysis in articular chondrocytes. Treatment of honokiol inhibited SNP-induced expression of p53 as well as DNA fragmentation in articular chondrocytes, but increased expressionof pro-caspase-3. Inhibition of SNP-induced apoptosis by honokiol treatment was rescued by LY294002, the specific inhibitors of phosphoinositide 3-kinase (PI-3K) in articular chondrocytes. Our results indicate that honokiol inhibits NO-induced apoptosis via PI-3K/AKT pathway in rabbit articular chondrocytes.

The protective effect of Citrus unshiu Peel water extract through PI3K/Akt/NF-κB signaling pathway in mice with HCl/ethanol-induced acute gastritis (HCl/ethanol로 유발한 급성 위염 마우스에서 PI3K/Akt/NF-κB 신호전달경로를 통한 진피 열수 추출물의 보호 효과)

  • Lee, Se Hui;Shin, Mi-Rae;Park, Hae-Jin;Roh, Seong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.288-296
    • /
    • 2022
  • This study aimed to verify the effect of Citrus unshiu peel water extract (CUP) on a mouse model of acute gastritis (AG) induced by HCl/ethanol. Several studies have found that CUP has anti-inflammatory effects. The AG model was induced by oral administration of 150 mM HCl/60% ethanol (550 µL) to all groups except the control group. Also, for drug treatment, sucralfate (10 mg/kg) and CUP (100 or 200 mg/kg) were orally administered for 90 minutes before induction. The effect of CUP treatment was confirmed by gross gastric mucosal damage measurement, and the levels of Glutamic Oxaloacetic Transaminase (GOT), Glutamic Pyruvic Transaminase (GPT), and myeloperoxidase were reduced as well as the levels of oxidative stress biomarkers and their related proteins. In addition, the levels of inflammatory proteins, mediators, and cytokines were significantly downregulated byPI3K/Akt signaling. Taken together, these results show that CUP treatment alleviates AG by regulating PI3K/Akt signaling.

Antiapoptotic Effects Induced by Different Wavelengths of Ultraviolet Light

  • Ibuki, Yuko;Goto, Rensuke
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.485-487
    • /
    • 2002
  • Cells receive signals for survival as well as death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which was partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)/ Akt pathway. In this study, anti-apoptotic effects of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC. Reduction of mitochondrial transmembrane potential and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned above. The PI3-kinase inhibitor wortmannin partially inhibittrl the UVB and UVC-induced suppression of apoptosis, but not the inhibitoty effect of UVA. The Akt phosphotylation by UVB and UVC was completely inhibittrl by addition of wortmannin, but that by UVA was not P38 MAP kinase inhibitor SB203580 partially inhibited the UVB and UVC-induced suppression of apoptosis and Akt phosphotylation, and completely inhibited UVA-induced those. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase/Akt pathway and dependent on p38 MAP kinase, and the other for UVB and UVC that is dependent on both pathways.

  • PDF

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun;Li, Shilun;Xue, Peng;Li, Yukun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.234-243
    • /
    • 2018
  • In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.

Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells

  • Ren, Yun;Huang, Fang;Liu, Yuan;Yang, Yang;Jiang, Qian;Xu, Caimin
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.599-604
    • /
    • 2009
  • Selenium possesses the chemotherapeutic feature by inducing apoptosis in cancer cell with trivial side effects on normal cells. However, the mechanism in which is not clearly understood. Emerging evidence indicates the overlaps between the autophagy and the apoptosis. In this study, we have investigated the role of autophagy in selenium-induced apoptosis in NB4 cells. We find that autophagy is suppressed in NB4 cells treated by sodium selenite, as measured by electron microscope, acridine orange staining and western blot. Moreover, selenite combined with autophagy inhibitor contributes to the up-regulation of apoptosis, while the PI3K/Akt signaling pathway is down- regulated. Consistently, when the inhibitor of PI3K was applied, the autophagic level significantly decreased. In summary, sodium selenite increases NB4 cell apoptosis by autophagy inhibition through PI3K/Akt, and the inhibition of autophagy contributes to the up-regulation of apoptosis.

Role of Akt in Insulin-Mediated Increase in Expression of Microsomal Epoxide Hydrolase (인슐린 매개성 Microsomal Epoxide Hydrolase의 발현증가에서 Akt의 역할)

  • Kim, Sang-Kyum;Kim, Bong-Hee;Oh, Jung-Min;Yun, Kang-Uk;Kim, Chung-Hyeon;Kang, Keon-Wook
    • YAKHAK HOEJI
    • /
    • v.51 no.5
    • /
    • pp.291-295
    • /
    • 2007
  • The present study examines the effect of dominant-negative Akt on the insulin-mediated microsomal epoxide hydrolase (mEH) induction in rat hepatocytes. We also assessed the role of insulin in the expression of soluble epoxide hydrrolase (sEH). Insulin increased mEH levels and the enzyme activities, whereas sEH protein expression was unaffected by insulin. The specific PI3K inhibitors or p70 S6 kinase inhibitor ameliorated the insulin-mediated increase in mEH protein levels. Infection with adenovirus expressing dominant-negative and kinase-dead mutant of Akt1 effectively inhibited the insulin-mediated increase in mEH expression and mEH activity. These results suggest that mEH and sEH are differentially regulated by insulin and PI3K/Akt/p70S6K are active in the insulin-mediated regulation of mEH expression.

Ameliorative Effect of Persicaria Poliata Etract through the Rgulation of AP-1, PI3K/Akt and MAPK Sgnaling Mlecules in UVB-Iradiated HaCaT Clls (HaCaT 세포에서 며느리 배꼽 추출물의 AP-1, PI3K/Akt 및 MAPK 활성 조절을 통한 광손상 억제 효과)

  • Hyun-Seo Yoon;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Purpose : Skin is the primary barrier to protect the body from various exogenous factors. Among them, UVB exposure can cause the induction of not only excessive inflammatory responses but also the degradation of extracellular matrix (ECM), including collagen and elastin. This study tried to investigate the ameliorative effect of Persicaria perfoliata ethanol extract (PPEE) on UVB-irradiated photodamage through the regulation of activator protein (AP)-1, phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) signaling molecules in HaCaT cells. Methods : The cytotoxicity of PPEE on HaCaT cells was evaluated by the WST-1 assay. The 80 mJ/cm2 of UVB (312 nm) was irradiated on HaCaT cells to induce the photodamage. Western blot analysis was conducted to investigate the protein expression levels of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and heme oxygenase (HO)-1 for ameliorative status by PPEE treatment in UVB-exposed HaCaT cells. In addition, the activated status of the inflammatory transcription factor, AP-1, as well as upstream signaling molecules, PI3K/Akt, and MAPK, were also evaluated by Western blot analysis. Results : Any cytotoxic effect was not induced at the concentration up to 200 ㎍/ml by PPEE treatment. Protein expression levels of COX-2 and MMP-9 were significantly down- and up-regulated by PPEE treatment. The inflammatory transcription factor AP-1, stimulated by UVB irradiation, was also significantly attenuated by PPEE treatment. The phosphorylated status of PI3K/Akt and MAPK were mitigated by PPEE treatment in UVB-exposed HaCaT cells. Moreover, PPEE treatment potently accelerated the expression of HO-1 and its transcription factor, nuclear factor-erythroid 2-related factor (Nrf)2, which is known for its anti-inflammatory activity. Conclusion : Consequently, PPEE treatment significantly regulated COX-2 and MMP-9 expressions in UVB-irradiated HaCaT cells. The inflammatory transcription factor AP-1, along with upstream signaling molecules PI3K/Akt and MAPKs, were also attenuated by PPEE treatment in UVB-exposed HaCaT cells. Additionally, PPEE treatment exaggerated HO-1 expression and Nrf2 activation, which might have contributed to the anti-inflammatory activity of PPEE. These results indicate that PPEE could be a candidate for attenuating UVB-induced photodamage in human skin.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.