• Title/Summary/Keyword: PI3-Kinase

Search Result 352, Processing Time 0.029 seconds

Angiotensin II-Induced Generation of Reactive Oxygen Species Is Regulated by a Phosphatidylinositol 3-Kinase/L-Type Calcium Channel Signaling Pathway (Angiotensin II에 의해 유도되는 활성산소발생 기전에 대한 연구)

  • Jin, Seo Yeon;Ha, Jung Min;Kim, Young Whan;Lee, Hye Sun;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.231-236
    • /
    • 2015
  • Angiotensin II (AngII) is an essential hormone that affects vascular physiology. For example, stimulation of vascular smooth muscle cells (VSMCs) rapidly induces vasoconstriction and results in the up-regulation of blood pressure. Chronic stimulation of VSMCs with AngII also results in hypertrophy. In this study, we confirmed an involvement of phosphatidylinositol 3-kinase (PI3K)-dependent calcium mobilization in AngII-induced generation of reactive oxygen species (ROS). Stimulation of rat aortic smooth muscle cells (RASMCs) with AngII significantly induced the generation of ROS in a dose- and time-dependent manner. AngII-induced generation of ROS was completely abolished by pharmacological inhibition of PI3K (with LY294002), but inhibition of the ERK signaling pathway had no effect. AngII-induced calcium mobilization was completely blocked by inhibition of PI3K, whereas inhibition of the ERK signaling pathway by PD98059 was ineffective. Depletion of extracellular calcium or inhibition of the L-type calcium channel by nifedipine completely blocked AngII-induced calcium mobilization. Depletion of extracellular calcium by EGTA and incubation of RASMCs with calcium-free medium both significantly blocked AngII-induced ROS generation. Inhibition of the L-type calcium channel also significantly blocked AngII-induced ROS generation. These results suggest that AngII-induced ROS generation is regulated by calcium mobilization, which, in turn, is modulated by a PI3K/L-type calcium channel signaling pathway.

The Role of Protein Kinase C for Prolactin Secretion in Chicken Primary Pituitary Cell Culture (산란계의 뇌하수체 세포배양에서 Prolactin의 생성에 관계하는 Protein Kinase C의 역할)

  • 선상수
    • Korean Journal of Poultry Science
    • /
    • v.23 no.3
    • /
    • pp.113-119
    • /
    • 1996
  • A series of experiments were conducted to investigate the role of protein kinase C (PKC) as a second messenger in vasoactive intestinal peptide (VIP) mediated prolactin secretion. Primary pituitary cells (106 cells/treatment) were separated from laying hens and incubated in M-199 with 5% chicken serum and 5% fetal calf serum. The VIP(0.1 $\pi$M) treatment enhanced prolactin Secretion into media upto 9-fold during 48-h incubation. The phorbol 12-myristate 13-acetate (PMA), a PKG agonist, increased prolactin secretion upto 2-fold at 0.1 nM PMA (P<0.01), and the prolactin secretion was not significantly higher than this concentration. Staurosporine (ST; 1.0$\pi$M) a PKC antagonist, decreased by 70% of 0.1 $\pi$M VIP-stimulated prolactin secretion and by 48% of 10 ${\mu}$M PMA-stimulated prolactin secretion (P<0.01). However, pituitary cell prolactin content did not differ in any treatment (P>0.05). In conclusion, these results indicate that the PKC second messenger system is involved in VIP-stimulated prolactin release in chicken primary pituitary cell culture.

  • PDF

Effects of Achyranthoside C Dimethyl Ester on Heme Oxygenase-1 Expression and NO Production (Heme Oxygenase-1 발현과 NO 생성에 미치는 Achyranthoside C Dimethyl Ester의 효과)

  • Bang, Soo Young;Song, Ji Su;Moon, Hyung-In;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.976-983
    • /
    • 2015
  • Achyranthoside C dimethyl ester (ACDE) is an oleanolic acid glycoside from Achyranthes japonica which has been used in traditional medicine for the treatment of edema and arthritis. In this study, we investigated the anti-inflammatory effects of ACDE in RAW264.7 macrophages. ACDE significantly induced heme oxygenase-1 (HO-1) gene expression in RAW264.7 cells, while ACDE improved LPS-induced toxicity of cells. And ACDE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Further study demonstrated that ACDE-induced expression of HO-1 was inhibited by inhibitors of phosphatidylinositol 3-kinase (PI-3K) (LY294002), c-Jun kinase (JNK) (SP600125), extracellular signal regulated kinase (ERK) (PD98059) and p38 kinase (SB203580). Moreover, ACDE phosphorylated Akt, JNK, ERK, and p38 MAPK. In addition, ACDE inhibited LPS-induced NO secretion as well as inducible NO synthase (iNOS) expression in a dose-dependent manner. The inhibitory effects of ACDE on iNOS expression were abrogated by small interfering RNA (siRNA)-mediated knock-down of HO-1. Therefore, these results suggest that ACDE suppresses the production of pro-inflammatory mediator such as NO by inducing HO-1 expression via PI-3K/Akt/MAPK-Nrf2 signaling pathway. These findings could help us to understand the active principle included in the roots of A. japonica and the molecular mechanisms underlying anti-inflammatory action of ACDE.

Roles of PI3K and Rac Pathways in H-ras Induced Invasion and Motility

  • Ilchung Shin;Kim, Seonhoe;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.144-144
    • /
    • 2003
  • Phosphatidylinositol 3-kinase (PI3K) and Rac play important roles that regulate cellular functions including cell survival and .migration. In the present study, we investigated the functional roles of PI3K and Rac1 pathways in H-ras-induced invasive phenotype and motility of MCF10A cells.(omitted)

  • PDF

Peroxiredoxin 6 Promotes Lung Cancer Cell Invasion by Inducing Urokinase-Type Plasminogen Activator via p38 Kinase, Phosphoinositide 3-Kinase, and Akt

  • Lee, Seung Bum;Ho, Jin-Nyoung;Yoon, Sung Hwan;Kang, Ga Young;Hwang, Sang-Gu;Um, Hong-Duck
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.583-588
    • /
    • 2009
  • The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

Synthesis and Akt1 Kinase Inhibitory Activity of 1,3,4-Thiadiazole Derivatives (1,3,4-Thiadiazole 유도체의 합성 및 Akt1 카이네이즈 저해 활성)

  • Yoo, Kyung-Ho;Kim, Se-Young;Ryu, Jae-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.370-379
    • /
    • 2008
  • Akt, a serine/threonine protein kinase as a viral oncogene, is a critical regulator of PI3K-mediated cell proliferation and survival. On translocation, Akt is phosphorylated and activated, ultimately resulting in stimulation of cell growth and survival. As a part of our program toward the novel Akt1 inhibitors with potent activity over PI3K signaling pathway, we found primary hit compound 2 with an $IC_{50}$ value of $620\mu}M$ from protein kinase focused library. Based on the structural features of 2, new 1,3,4-thiadiazole derivatives were designed by the introduction of aromatic and heteroaromatic moieties onto thiadiazole nucleus. In this work, a series of 1,3,4-thiadiazole derivatives 1a-1 were synthesized and evaluated for Akt1 inhibitory activity.

Gardenia jasminoides Exerts Anti-inflammatory Activity via Akt and p38-dependent Heme Oxygenase-1 Upregulation in Microglial Cells (소교세포에서 heme oxygenase-1 발현 유도를 통한 치자(Gardenia jasminoides)의 항염증 효과)

  • Song, Ji Su;Shin, Ji Eun;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Died Gardenia jasminoides fruit is used as a dye in the food and clothes industries in Asia. The present study investigated the anti-inflammatory effects of aqueous extract of G. jasminoides fruits (GJ) in BV-2 microglial cells. GJ inhibited lipopolysaccharide-induced nitric oxide (NO) secretion, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species production, without affecting cell viability. Furthermore, GJ increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner. Moreover, the inhibitory effect of GJ on iNOS expression was abrogated by small interfering RNA-mediated knock-down of HO-1. In addition, GJ induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. GJ-mediated expression of HO-1 was suppressed by LY294002, a phosphoinositide 3-kinase (PI-3K) inhibitor, and SB203580, a p38 kinase inhibitor, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 or c-Jun N-terminal kinase (JNK) inhibitor SP600125. GJ also enhanced the phosphorylation of Akt and p38. These results suggest that GJ suppresses the production of NO, a pro-inflammatory mediator, by inducing HO-1 expression via PI-3K/Akt/p38 signaling. These findings illustrate a novel molecular mechanism by which extract from G. jasminoides fruits inhibits neuroinflammation.

Oncogenesis and the Clinical Significance of K-ras in Pancreatic Adenocarcinoma

  • Huang, Chun;Wang, Wei-Min;Gong, Jian-Ping;Yang, Kang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2699-2701
    • /
    • 2013
  • The RAS family genes encode small GTP-binding cytoplasmic proteins. Activated KRAS engages multiple effector pathways, notably the RAF-mitogen-activated protein kinase, phosphoinositide-3-kinase (PI3K) and RalGDS pathways. In the clinical field, K-ras oncogene activation is frequently found in human cancers and thus may serve as a potential diagnostic marker for cancer cells in circulation. This mini-review aims to summarise information on Ras-induced oncogenesis and the clinical significance of K-ras.

Requirement of PI3K-PKC$\varepsilon$ Signaling Pathway for Apicidin Induction of p$21^{WAFl/Cip1}$

  • Kim, Yong-Kee;Cho, Eun-Jung;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.144.1-144.1
    • /
    • 2003
  • We previously reported that the activation of p$21^{WAFl/Cip1}$ transcription by histone deacetylase inhibitor apicidin was mediated through Spl sites and pointed to the possible participation of protein kinase C (PKC). In this study, we investigated the role and identity of the specific isoforms of PKC involved and identified phosphatidylinositol 3-kinase (PI 3-kinase) as an upstream effector in HeLa cells. Using an isoform-specific pharmacological inhibitor of PKC, a PKC$\varepsilon$ dominant-negative mutant, and antisense oligonucleotide to inhibit PKC$\varepsilon$ specifically, (omitted)

  • PDF