• 제목/요약/키워드: PI3-Kinase

검색결과 350건 처리시간 0.028초

PHOSPHATIDYLINOSITOL 3-KINASE REGULATES NUCLEAR TRANSLOCATION OF Nrf2 THROUGH ACTIN REARRANGEMENT

  • Kim, Sang-Geon;Kang, Keon-Wook;Lee, Seung-Jin;Park, Jeong-Weon;Kim, Hye-Jung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.82-82
    • /
    • 2002
  • Expression of phase II detoxifying genes is regulated by Nrf2-mediated antioxidant response element (ARE) activation. We previously showed that phosphatidylinositol 3-kinase (PI3-kinase) plays an essential role in ARE-mediated rGSTA2 induction by oxidative stress.(omitted)

  • PDF

3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과 (Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes)

  • 이현아;한지숙
    • 생명과학회지
    • /
    • 제32권2호
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol은 pentacyclic triterpene의 일종으로 다양한 질병에 약리 효과가 있는 것으로 보고되어 있으나, lupeol이 포도당 흡수에 미치는 영향은 아직 보고된 바 없다. 본 연구에서 3T3-L1 지방세포에서 포도당 흡수에 대한 lupeol의 효과를 조사하였다. 그 결과, Lupeol은 3T3-L1 지방세포에서 GLUT4를 원형질막으로 이동시켜 포도당 흡수를 촉진하였으며, 이는 PI3K/AKT 및 AMPK 경로의 활성화와 관련되어 있었다. PI3K/AKT 경로에서 lupeol은 PI3K를 활성화시키는 insulin receptor substrate 1의 인산화와 AKT의 인산화를 촉진하지만 비정형 단백질 키나아제 C isoforms ζ 및 λ의 인산화는 촉진하지 않았다. 반면, lupeol은 5 'AMP-activated protein kinase의 인산화를 촉진하였고, Lupeol의 의한 AMPK의 활성화는 원형질막-GLUT4의 발현과 세포내 포도당 흡수를 증가시키는 것으로 확인되었다. 3T3-L1 지방세포에서 lupeol에 의한 포도당 흡수 효과는 PI3K 억제제인 wortmannin 및 AMPK 억제제인 Compound C에 의해 억제됨을 통해 확인하였다. 본 연구 결과는 lupeol이 3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로를 통해 원형질막 GLUT4의 발현을 자극함으로써 인슐린 감수성을 증가시켜 포도당 흡수를 촉진할 수 있음을 제시하고 있다.

Comparison of Bradykinin- and Platelet-Derived Growth Factor-Induced Phosphoinositide Turnover in NIH 3T3 Cells

  • Lee, Kee-Ho;Ryu, Yong-Wun;Yoo, Young-Do;Bai, Dong-Hoon;Yu, Ju-Hyun;Kim, Chang-Min
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.549-554
    • /
    • 1996
  • Phosphoinositide turnover in response to platelet-derived growth factor, epidermal growth factor, and bradykinin was evaluated in NIH 3T3 cells. Platelet-derived growth factor and bradykinin induced a significant increase in incorporation of $^{32}P$ into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4.5-bisphosphate ($PIP_2$) in serum-starved NIH 3T3 cells. However, epidermal growth factor increased incorporation of $^{32}P$ into these phosphoinositides by only a small amount. Stimulation with platelet-derived growth factor, not bradykinin, caused a rapid elevation of PI and PIP kinase activities that were maximally activated within 10 min. The maximal levels of their elevation in cells with plateletderived growth factor stimulation were 3.2-fold for PI kinase, and 2.1-fold for PIP kinase. Short term pretreatment of NIH 3T3 cells with phorbol 12-myristate 13-acetate, activator of protein kinase C. caused an approximately 60% decrease in platelet-derived growth factor-induced PI kinase activities, indicating the feedback regulation of phosphoinositide turnover by protein kinase C. These results suggest that although the enhancement of phosphoinositide turnover is a rapidly occurring response in platelet-derived growth factor- or bradykinin-stimulated NIH 3T3 cells, phosphoinositide kinases may be associated with initial signal transduction pathway relevant to platelet-derived growth factor but not to bradykinin.

  • PDF

Osteoclast Differentiation Factor Engages the PI 3-kinase, p38, and ERK pathways for Avian Osteoclast Differentiation

  • Kim, Hong-Hee;Kim, Hyun-Man;Kwack, Kyu-Bum;Kim, Si-Wouk;Lee, Zang-Hee
    • BMB Reports
    • /
    • 제34권5호
    • /
    • pp.421-427
    • /
    • 2001
  • Osteoclasts, cells primarily involved in bone resorption, originate from the hematopoietic precursor cells of the monocyte/macrophage lineage and differentiate into multinucleated mature forms. We developed an in vitro osteoclast culture system using embryonic chicken bone marrow cells. This culture system can be utilized in studies on the differentiation and function of osteoclasts. Phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein kinases (MAPKs) have been implicated in diverse cellular functions including proliferation, migration, and survival. Using the developed avian osteoclast culture system, we examined the involvement of these kinases in osteoclast differentiation by employing specific inhibitors of the kinases. We Found that the inhibition of the PI 3-kinase, p38, or ERK interfered with osteoclast formation, suggesting that the signaling pathways that involve these molecules participate in the process of chicken osteoclast differentiation.

  • PDF

Amoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica

  • Lee, Young Ah;Kim, Kyeong Ah;Min, Arim;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • 제52권4호
    • /
    • pp.355-365
    • /
    • 2014
  • The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

Antiapoptotic Effects Induced by Different Wavelengths of Ultraviolet Light

  • Ibuki, Yuko;Goto, Rensuke
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.485-487
    • /
    • 2002
  • Cells receive signals for survival as well as death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which was partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)/ Akt pathway. In this study, anti-apoptotic effects of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC. Reduction of mitochondrial transmembrane potential and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned above. The PI3-kinase inhibitor wortmannin partially inhibittrl the UVB and UVC-induced suppression of apoptosis, but not the inhibitoty effect of UVA. The Akt phosphotylation by UVB and UVC was completely inhibittrl by addition of wortmannin, but that by UVA was not P38 MAP kinase inhibitor SB203580 partially inhibited the UVB and UVC-induced suppression of apoptosis and Akt phosphotylation, and completely inhibited UVA-induced those. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase/Akt pathway and dependent on p38 MAP kinase, and the other for UVB and UVC that is dependent on both pathways.

  • PDF

Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231

  • Yu, Seon-Mi;Kim, Song-Ja
    • Animal cells and systems
    • /
    • 제16권4호
    • /
    • pp.274-279
    • /
    • 2012
  • Thymoquinone (TQ), a drug extracted from the black seeds of Nigella sativa, has been shown to exhibit anti-inflammatory, anti-oxidant, and anti-neoplastic effects in numerous cancer cells. The effects of TQ on cyclooxygenase-2 (COX-2) expression and prostaglandin $E_2$ ($PGE_2$) production in MDA-MB-231, however, remain poorly understood. Western blot analysis and immunofluorescence staining were performed to study the expression levels of inflammation regulatory proteins in MDA-MB-231. $PGE_2$ assay was conducted to explore the TQ-induced production of $PGE_2$. In this study, we investigated the effects of TQ on COX-2 expression and $PGE_2$ production in MDA-MB-231. TQ significantly induced COX-2 expression and increased $PGE_2$ production in a dose-dependent manner, as determined by a Western blot analysis and $PGE_2$ assay. Furthermore, the activation of Akt and p38 kinase, respectively, was up-regulated in TQ treated cells. Inhibition of p38 kinase with SB203580 and PI3kinase (PI3K) with LY294002 abolished TQ-caused COX-2 expression and decreased $PGE_2$ production. These results collectively demonstrate that TQ effectively modulates COX-2 expression and $PGE_2$ production via PI3K and p38 kinase pathways in the human breast cancer cell line MDA-MB-231.

넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구 (Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus))

  • 정태혁;윤주연;지근호;서용배;김영태
    • 생명과학회지
    • /
    • 제24권4호
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K)는 항산화 제어반응, 심근세포 성장, 및 세포 내 특수반응 뿐만 아니라 세포분화, 생장, 운동, 식균 및 내항작용, 세포 골격유지에 관여하는 등 세포 신호체계에서 핵심 역할을 하는 효소이다. PI3K는 세 그룹으로 나누어지며 type I PI3K는 leukocyte에서 우선적으로 발현되고 G-proteins의 ${\beta}{\gamma}$ subunits에 의해서 활성화 된다. 본 연구에서는 넙치(Paralichthys olivaceus)의 $PI3K{\gamma}$를 암호화하는 cDNA를 클로닝하였다. 넙치의 $PI3K{\gamma}$는 1,341 bp 염기로 구성되는 한 개의 ORF를 가지며 이 단백질은 447 아미노산으로 구성되어있다. $PI3K{\gamma}$는 zebrafish의 $PI3K{\gamma}$와 89.6%, mouse와는 84.7%, Norway rat와는 84%, human의 $PI3K{\gamma}$와는 74.9%가 아미노산 상동성을 나타내었다. $PI3K{\gamma}$유전자의 대장균에서 발현을 위하여 pET-44a(+)-PI3K 재조합 DNA를 구축하여 대장균에서 발현시킨 결과 49 kDa의 재조합 단백질이 과발현 됨을 확인 할 수 있었다. His-tag affinity chromatography를 이용하여 $PI3K{\gamma}$단백질을 순순 분리하였으며 wortmannin을 이용하여 $PI3K{\gamma}$의 활성을 분석하였다.

INVOLVEMENT OF PHOSPHATIDYLINOSITOL 3-KINASE (PI3K) PATHWAY IN H-RAS-INDUCED INVASION AND MOTILITY OF HUMAN BREAST EPITHELIAL CELLS

  • Shin, Il-Chung;Aree Moon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.142-142
    • /
    • 2002
  • Many studies have identified the phosphatidylinositol 3-kinase (PI3K) as a key regulator for various cellular functions including cell survival, growth and motility. We have previously shown that H-ras, but not N-ras, induces invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype.(omitted)

  • PDF

Roles of Phosphatidylinositol 3-Kinase(PI3K) and Rac1

  • Shin, Il-Chung;Kim, Seon-Hoe;Moon, A-Ree
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.223.1-223.1
    • /
    • 2003
  • Many studies have identified the phosphatidylinositol 3-kinase (PI3K) as a key regulator for various cellular functions including cell survival, growth and motility. We have previously shown that H-ras, but not N-ras. induces invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In the present study, we wished to investigate the functional role of PI3K pathway in H-ra-induced invasive phenotype and motility of MCF10A cells. (omitted)

  • PDF