• Title/Summary/Keyword: PI flux controller

Search Result 48, Processing Time 0.024 seconds

Stability Comparison of New Simplified Speed Sensorless Vector Control Systems for Induction Motors

  • Mangindaan, Glanny M.Ch.;Tsuji, Mineo;Hamasaki, Sin-Ichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.126-131
    • /
    • 2014
  • This paper discusses stability of new simplified sensorless vector control systems of induction motors (IM). The simplified sensorless systems estimate the flux angle by using the output voltage of d-axis PI current controller to achieve the q-axis flux zero. Two simplified sensorless systems are studied. The difference of two systems is the presence or absence of a q-axis PI current controller. The systems stability is compared by deriving linear state equations and showing root loci and unstable regions. Furthermore, transient responses and experiment results make clear the stability of the proposed system.

Speed Sensorless Vector Control of Induction Motor Using MATLAB/SIMULINK and dSPACE DS1104 (MATLAB/SIMULINK와 dSPACE DS1104를 이용한 유도 전동기의 속도 센서리스 벡터제어)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control of induction motor using MATLAB/SIMULINK and dSPACE DS1104. Proposed flux estimation algorithm, which utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, enables stable estimation of rotor flux. Proposed rotor speed estimation algorithm utilizes the estimated flux. And the estimated rotor speed is used to speed control of induction motor. Overall system consists of speed controller, current controller, and flux controller using the most general PI controller. Speed sensorless vector control algorithm is implemented as block diagrams using MATLAB/SIMULINK. And realtime control is performed by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

Phasor Analysis of Sensorless Vector Control System Model for Induction Motor (유도전동기 센서리스 벡터제어 시스템 모델의 페이저 해석)

  • Lee, H.J.;Hwang, J.H.;Seong, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2015-2017
    • /
    • 1998
  • This paper deals with the design of a field oriented control system model for the high performance induction motor using Matlab with Simulink. The proposed control system model, which is not used the speed and flux sensor, contains IM model, Tranformation, Decoupling, FFOC(Field Flux Orientation Controller), Torque calculator and PI Controller to control speed, torque. Results present the stator and rotor flux phasor trajectory, the startup and transient response of speed, torque and stator current with field oriented control and the response to changes in reference speed with no load. This paper shows that the propose control system is more robust than other vector control system, and suggest the enchanced model, using Matlab with Simulink for the high performance in induction motor control.

  • PDF

Sensorless Vector Control of Spindle Induction Motors Using Rotor Flux Observer with a Variable Bandwidth (가변게인 회전자 자속관측기에 근거한 스핀들 유도전동기의 센서리스 속도제어)

  • Yu, Jae-Sung;Sin, Soo-Cheol;Lee, Won-Cheol;Park, Sang-Hoon;Won, Chung-Yuen;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.417-425
    • /
    • 2006
  • This paper presents a new speed sensorless vector control scheme of Spindle Induction Motors(SIM) which can be successfully applied to at any speed including even zero speed. The proposed sensorless vector control of SIM uses rotor flux estimator with a variable bandwidth. This approach is based on the Closed-Loop Rotor Flux Observer(CLRFO) which includes a variable bandwidth of the PI controller. For low speed operation, the bandwidth of CLRFO has a variable bandwidth structure according to the estimated rotor velocity. The experimental results show the satisfactory operation of the proposed sensorless algorithm.

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • 박현철;이수원;김영민;황종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

The Thrust Control Characteristics of Single-Sided Linear Induction Motor

  • Jang Young-hae;Lim Hong-woo;Park Soo-Kang;Cho Geum-bae;Baek Hyung-lae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.453-456
    • /
    • 2001
  • The thrust control characteristics of single-sided linear induction motor (SLIM) is achieved using PI controller in this paper. The trembling of air gap length between the primary winding and the secondary structure of the SLIM must be minimized in order to get quick response results. Also, the input voltage of SLIM is involved with the time harmonics because most SLIM is driven by inverter. According to the feedback linear control system, this paper describes with applying the non-linear control, speed and estimated flux algorithm. At the result of this experiment, we reached to the improvement of thrust characteristics with PI controller.

  • PDF

Improvement of Dynamic characteristics in the flux weakening region of IPMSM using PI-IP hybrid controller (PI-IP 혼합제어기를 이용한 IPMSM의 약자속 운전 영역에서 전류 제어 시 과도상태 응답 특성 개선)

  • Ha, Sung-Pil;Park, Jin-Ho;Lee, Jea-Hyuk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.233-234
    • /
    • 2011
  • 본 논문에서는 IPMSM의 약자속 제어 영역에서 토크제어를 하기위한 전류제어기를 PI-IP 혼합제어기로 구성하였다. 약자속 제어 영역에서 토크제어 시 d축과 q축의 인덕턴스 차이로 인해 전류제어 응답의 차이가 발생하여 전압여유분 확보에 문제점이 발생한다. 이러한 문제점을 개선하고자 PI-IP 혼합제어기를 적용하여 약자속 영역에서의 d축과 q축의 전류 제어기의 응답특성을 달리하여 토크제어 시 과도상태에서 발생하는 문제점을 개선하였다.

  • PDF

A Study on Speed Control of Induction Motor using Space Vector PWM (공간벡터 PWM을 이용한 유도전동기의 속도제어에 관한 연구)

  • Kim, Young-Gon;Choi, Jung-Hwan;Lee, Seung-Hwan;Kim, Sung-Nam;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.476-478
    • /
    • 1996
  • This paper is on speed control of induction motor using space vector PWM. Indirect vector control which controls independantly flux and torque current component in order to drive induction motor, is applied for driving motor. Voltage sourced inverter with space vector PWM is used to generate the practically perfect sinusoidal flux density in induction motor. The appropriateness of speed control is proven by appling IP(Integral-proportional) controller which is known to have a good speed response and still to have less overshoot than the now used PI(Proportional-Integral) controller.

  • PDF

Slip Compensation for Rotor Time Constant Variation of Induction Motor Drives (유도전동기의 회전자 시정수 변동에 대한 슬립 보상)

  • 이수원;전칠환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.487-492
    • /
    • 2000
  • This paper presents a novel method of slip-compensation for rotor time constant variation in indirect field orientation control of induction motor drives. In field oriented control due to variation of rotor time constant, decoupling between the flux and torque components of stator current is lost and hence, the performance of operation of the machine deteriorates. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations and experiments are executed.

  • PDF