• Title/Summary/Keyword: PI Current control

Search Result 417, Processing Time 0.025 seconds

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.

Automatic Turn-off Angle Control for High Speed SRM Drives

  • Nashed Maged N.F.;Ohyama Kazuhiro;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents a new approach to the automatic control of the turn-off angle used to excite the Switched Reluctance Motor (SRM) employed in electric vehicles (EV). The controller selects the turn-off angle that supports and improves the performance of the motor drive system. This control scheme consisting of classical current control and speed control depends on a lookup table to take the best result of the motor. The turn-on angle of the main switches of the inverter is fixed at $0^{\circ}C$ and the turn-off angle is variable depending on the reference speed. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system.

A Hysteresis Current Controller for PV-Wind Hybrid Source Fed STATCOM System Using Cascaded Multilevel Inverters

  • Palanisamy, R.;Vijayakumar, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.270-279
    • /
    • 2018
  • This paper elucidates a hysteresis current controller for enhancing the performance of static synchronous compensator (STATCOM) using cascaded H-bridge multilevel inverter. Due to the rising power demand and growing conventional generation costs a new alternative in renewable energy source is gaining popularity and recognition. A five level single phase cascaded multilevel inverter with two separated dc sources, which is energized by photovoltaic - wind hybrid energy source. The voltages across the each dc source is balanced and standardized by the proposed hysteresis current controller. The performance of STATCOM is analyzed by connecting with grid connected system, under the steady state & dynamic state. To reduce the Total Harmonic Distortion (THD) and to improve the output voltage, closed loop hysteresis current control is achieved using PLL and PI controller. The performance of the proposed system is scrutinized through various simulation results using matlab/simulink and hardware results are also verified with simulation results.

A Stability Estimation Method of HVDC System Using Reduced Model (축약모델을 이용한 HVDC시스템의 안정도 평가)

  • Kim Chan-Ki;Lim Seong-Joo;Choo Jin-Boo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • This paper deals with the HVDC stability according to controller types and control modes. From the viewpoint of controllers, the HVDC system which has PI, PD and PID, is designed considering the system response and stability. Also the HVDC system consists of multi-control modes like voltage control, current control and alpha control. Therefore, the HVDC stability analysis have to consider the above control modes and controller types. In this paper, the reduced model of HVDC control is analyzed in PSS/E(Power System Simulation/Engineering) and PSCAD/EMTDC.

A sensorless speed control of brushless DC motor by using direct torque control (직접토크제어에 의한 브러시리스 직류전동기의 센서리스 속도제어)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.935-939
    • /
    • 2015
  • This paper describes sensorless speed control of brushless DC motors by using direct torque control. Direct torque control offers fast torque response, robust specification of parameter changes, and lower hardware and processing costs compared to vector-controlled drives. In this paper, the current error compensation method is applied to the sensorless speed control of a brushless DC motor. Through this control technique, the controlled stator voltage is applied to the brushless DC motor such that the error between the stator currents in the mathematical model and the actual motor can be forced to decay to zero as time proceeds, and therefore, the motor speed approaches the setting value. This paper discusses the composition of the controller, which can carry out robust speed control without any proportional-integral (PI) controllers. The simulation results show that the control system has good dynamic speed and load responses at wide ranges of speed.

A Novel Direct Torque Control of Induction Motor using stator flux (고정자 자속제어를 이용한 유도전동기의 새로운 직접 토크 제어)

  • Park Jun-Hyun;Jeong Jong-Jin;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.15-18
    • /
    • 2001
  • This paper describes a control scheme for direct torque and flux control of induction machines. The proposed predictive flux control scheme has directly calculated the reference voltage space vector based on flux errors in order to control the torque and flux. This proposed control scheme has not the requirement of a separate current regulator and proportional-integral (PI) control of the flux, torque, and/or current error, thereby improving transient performance and also has the advantage of less torque ripple in steady state with a fixed switching period. The effect of proposed method has been proven by simulations and experiments.

  • PDF

Servo Control System of Permanent Magnet Synchronous Motor Using Space Voltage Vector PWM (공간전압벡터 PWM을 이용한 영구자석형 동기전동기의 서보제어 시스템)

  • Won, Euy-Youn;Ra, Sang-Hoon;Yoon, Duck-Yong;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.290-293
    • /
    • 1994
  • This paper proposes a servo control system of SPMSM (Surface-mounted Permanent Magnet Synchronous Motor) which essentially uses vector control method. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed processing of algorithm for vector control and inverter switching for PWM is carried out by TMS320C31 DSP and IGBT module, respectively. The proposed scheme for 2.2kW SPMSM is verified through digital simulations and experiments, which show higher performance than that of traditional hysteresis current control technique.

  • PDF

A Novel Direct Torque Control of Induction Motor (유도전동기의 새로운 직접 토크 제어)

  • Park Jun-Hyun;Lee Kyung-Joo;Lee Deuk-Kee;Jeong Jong-Jin;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.426-429
    • /
    • 2001
  • This paper describes a control scheme for direct torque and flux control of induction machines. The proposed predictive flux control scheme has directly calculated the reference voltage space vector based on flux errors in order to control the torque and flux. This proposed control scheme has not the requirement of a separate current regulator and proportional-integral (PI) control of the flux, torque, and/or current error, thereby improving transient performance and also has the advantage of less torque ripple in steady state with a fixed switching period. The effect of proposed method has been proven by simulations.

  • PDF

Predictive Direct Power Control in MMC-HVDC System (MMC-HVDC 시스템의 예측 기반 직접전력제어)

  • Lee, Kui-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.403-407
    • /
    • 2018
  • This study proposes a predictive direct power control method in a modular multilevel converter (MMC) high-voltage direct-current (HVDC) system. The conventional proportional integral (PI)-based control method uses a cascaded connection and requires an optimal gain selection procedure and additional decoupling scheme. However, the proposed control method has a simple structure for active/reactive power control due to the direct power control scheme and exhibits a fast dynamic response by predicting the future status of system variables and considering time delay. The effectiveness of the proposed method is verified by simulation results.