• Title/Summary/Keyword: PHEVs

Search Result 23, Processing Time 0.015 seconds

Range Extension of Light-Duty Electric Vehicle Improving Efficiency and Power Density of IPMSM Considering Driving Cycle (주행 사이클을 고려한 IPMSM의 효율 및 출력 밀도 개선으로 경량 전기 자동차의 주행거리 연장)

  • Kim, Dong-Min;Jung, Young-Hoon;Lim, Myung-Seop;Sim, Jae-Han;Hon, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2197-2210
    • /
    • 2016
  • Recently, the trend of zero emissions has increased in automotive engineering because of environmental problems and regulations. Therefore, the development of battery electric vehicles (EVs), hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs), and fuel cell electric vehicles (FCEVs) has been mainstreamed. In particular, for light-duty electric vehicles, improvement in electric motor performance is directly linked to driving range and driving performance. In this paper, using an improved design for the interior permanent magnet synchronous motor (IPMSM), the EV driving range for the light-duty EV was extended. In the electromagnetic design process, a 2D finite element method (FEM) was used. Furthermore, to consider mechanical stress, ANSYS Workbench was adopted. To conduct a vehicle simulation, the vehicle was modeled to include an electric motor model, energy storage model, and regenerative braking. From these results, using the advanced vehicle simulator (ADVISOR) based on MATLAB Simulink, a vehicle simulation was performed, and the effects of the improved design were described.

Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application (전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계)

  • Oh, Chang-Yeol;Kim, Jong-Soo;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

Design and Implementation of 3.3 kW On-Board Battery Charger for Electric Vehicles (전기자동차용 3.3 kW 탑재형 배터리 충전기 설계 및 제작)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Jung, Hye-Man;Lee, Byoung-Kuk;Cho, Young-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.369-375
    • /
    • 2010
  • This paper presents a design and implementation of 3.3 kW on-board battery charger for electric vehicles or plug-in hybrid electric vehicles. Considering characteristics of the electric vehicles, a series-loaded resonant dc-dc converter and frequency control scheme are adopted to improve efficiency and reliability, and to reduce volume and cost. The developed on-board battery charger is designed and implemented by using high frequency of 80-130 kHz and zero voltage switching method. The experimental result indicates 92.5% of the maximum efficiency, 5.84 liters in volume, and 5.8kg in weight through optimal hardware design.