• Title/Summary/Keyword: PHENOTYPIC PLASTICITY

Search Result 22, Processing Time 0.027 seconds

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

Variation in morphological traits over a wave-exposure gradient in one but not in another species of the brown alga Carpophyllum (Fucales)

  • Hodge, Fiona;Buchanan, Joseph;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • Environmental conditions can influence the morphology of local biota through phenotypic plasticity or local adaptation. Macroalgal morphologies are often associated with wave-exposure conditions. We investigated the relationship between morphology and wave exposure in two common endemic subtidal macroalgae, Carpophyllum angustifolium and C. maschalocarpum, from the East Cape of New Zealand. Morphological comparisons were made between individuals from two sites and four different wave-exposure zones, as defined by fetch and barnacle composition. Of the seven morphological traits measured in C. angustifolium, only total length varied, and individuals were longer in more wave-exposed environments between the two exposure zones where the species were found. In contrast, total length, stipe thickness and vesicle presence all varied significantly between exposure zones in C. maschalocarpum. C. maschalocarpum specimens were shorter with thinner stipes, and fewer individuals had vesicles in the more wave-exposed zones. Morphological traits of both species also varied between sites, suggesting that other influences are important for determining species morphology. Further study is needed to investigate the role of phenotypic plasticity and genetic variability for driving morphological variation in C. angustifolium and C. maschalocarpum.

Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages

  • Meyer J. Friedman;Haram Lee;June-Yong Lee;Soohwan Oh
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.5.1-5.28
    • /
    • 2023
  • Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and threedimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.

Effects of different day length and wind conditions to the seedling growth performance of Phragmites australis

  • Hong, Mun Gi;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.78-87
    • /
    • 2021
  • Background: To understand shade and wind effects on seedling traits of common reed (Phragmites australis), we conducted a mesocosm experiment manipulating day length (10 h daytime a day as open canopy conditions or 6 h daytime a day as partially closed canopy conditions) and wind speed (0 m/s as windless conditions or 4 m/s as windy conditions). Results: Most values of functional traits of leaf blades, culms, and biomass production of P. australis were higher under long day length. In particular, we found sole positive effects of long day length in several functional traits such as internode and leaf blade lengths and the values of above-ground dry weight (DW), rhizome DW, and total DW. Wind-induced effects on functional traits were different depending on functional traits. Wind contributed to relatively low values of chlorophyll contents, angles between leaf blades, mean culm height, and maximum culm height. In contrast, wind contributed to relatively high values of culm density and below-ground DW. Conclusions: Although wind appeared to inhibit the vertical growth of P. australis through physiological and morphological changes in leaf blades, it seemed that P. australis might compensate the inhibited vertical growth with increased horizontal growth such as more numerous culms, indicating a highly adaptive characteristic of P. australis in terms of phenotypic plasticity under windy environments.

Utilizing chromosome segment substitution lines (CSSLs) to evaluate developmental plasticity of root systems in hardpan penetration and deep rooting triggered by soil moisture fluctuations in rice

  • Nguyen, Thi Ngoc Dinh;Suralta, Roel R.;Mana, Kano-Nakata;Mitsuya, Shiro;Stella, Owusu Nketia;Kabuki, Takuya;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.321-321
    • /
    • 2017
  • Water availability in rainfed lowlands (RFL) is strongly affected by climate change. In RFL, rice plants are exposed to soil moisture fluctuations (SMF) but rarely to simple progressive drought as widely believed. Typical RFL field is characterized by a about 5-cm thick high bulk density hardpan layer underneath the cultivated layer at about 20 cm depth that impedes deep root development. Root system has the ability to develop in response to changes in SMF, known as phenotypic plasticity. We hypothesized that genotypes that can adapt to RFL have root plasticity. The roots can sharply respond to re-wetting after drought period and thus penetrate the hardpan layer when the hardpan is wet and so becomes relatively soft, and thus access water under the hardpan. This study aimed to identify CSSLs derived from a cross between Sasanishiki and Habataki which adapted to such RFL conditions. We used 39 CSSLs together with the parent Sasanishiki, which were grown in hydroponics and pot under transient soil moisture stresses (drought and then rewatering), and compared with continuously well-watered (WW) (control) up to 14 days after sowing (DAS), and 20 DAS, respectively. Based on the results of hydroponics and pot experiments, we selected a few lines, which were grown in the soil-filled rootbox with artificial hardpan layer and without artificial hardpan. For the rootbox without artificial hardpan, plants were grown under WW and transient soil moisture stresses for 49 DAS. While the rootbox with artificial hardpan, the plants were grown under WW (control) and SMF (WW up to 21 DAS, 1st drought (22-36 DAS), rewatering (37-44 DAS), and followed by 2nd drought (45-58 DAS)). Among the 39 CSSLs, only CSSL439 (SL39) consistently showed significantly higher shoot dry weight (SDW) than Sasanishiki under transient soil moisture stress conditions as well as SMF conditions in all the experiments. Furthermore, under WW, SL39 consistently showed no significant differences from Sasanishiki in shoot and root growth in most of traits examined. SL39 showed significantly greater total root length (TRL) than Sasanishiki under transient soil moisture stress, which is considered as phenotypic plasticity in response to rewatering after drought period. Such plastic root development was the key trait that effectively contributed to root elongation and branching during the rewatering period and consequently enhanced the root to penetrate hardpan layer when the soil penetration resistance at hardpan layer reduced. In addition, using the rootbox with artificial hardpan layer ($1.7g\;cm^{-3}$, heavily compacted), SL39 showed greater root system development than Sasanishiki under SMF, which was expressed in its significantly higher TRL, total nodal RL, and total lateral RL at hardpan layer as well as at below the hardpan layer. These results prove that SL39 has plasticity that enables its root systems to penetrate hardpan layer in response to rewatering. Under SMF, such root plasticity contributed to its higher gs and Pn.

  • PDF

Deciphering Macrophage Phenotypes upon Lipid Uptake and Atherosclerosis

  • Jihye Lee;Jae-Hoon Choi
    • IMMUNE NETWORK
    • /
    • v.20 no.3
    • /
    • pp.22.1-22.21
    • /
    • 2020
  • In the progression of atherosclerosis, macrophages are the key immune cells for foam cell formation. During hyperlipidemic condition, phagocytic cells such as monocytes and macrophages uptake oxidized low-density lipoproteins (oxLDLs) accumulated in subintimal space, and lipid droplets are accumulated in their cytosols. In this review, we discussed the characteristics and phenotypic changes of macrophages in atherosclerosis and the effect of cytosolic lipid accumulation on macrophage phenotype. Due to macrophage plasticity, the inflammatory phenotypes triggered by oxLDL can be re-programmed by cytosolic lipid accumulation, showing downregulation of NF-κB activation followed by activation of anti-inflammatory genes, leading to tissue repair and homeostasis. We also discuss about various in vivo and in vitro models for atherosclerosis research and next generation sequencing technologies for foam cell gene expression profiling. Analysis of the phenotypic changes of macrophages during the progression of atherosclerosis with adequate approach may lead to exact understandings of the cellular mechanisms and hint therapeutic targets for the treatment of atherosclerosis.

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

Inter-and Interspecific Variation in Smooth(D. ischaemum) and Large Crabgrass (D. sanguinalis) (잔디밭 잡초 바랭이(Digitaria sp.)의 종내 및 종간 변이성)

  • ;Joseph C. Neal
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.3
    • /
    • pp.127-136
    • /
    • 2001
  • A field trial was initiated to examine the range of inter- and intraspecific variations in morphological and phenological traits with five different accessions of smooth and large crabgrass. In addition, a controlled environment study was conducted to determine the phenotypic plasticity among the accessions of both species in response to 4 daily tempera-ture differentials. In the field experiment, significant inter- and intraspecific variations of smooth and large crabgrass were observed in morphological traits such as leaf length and width. However, most phenological traits were not substantially different between the species and among the accessions of each species. The first seedling emerged at the same time, requiring 9~ 10 days, regardless of the accessions and species. In a controlled environment study, all accessions of each species responded similarly to the 4 temperature differentials in seedling emergence, indicating seedling emergence was not a plastic trait. These results suggest that predicting crabgrass seedling emergence could be independent of geographical regions in the US.

  • PDF

Effects of land-based fish farm effluent on the morphology and growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in southwestern Nova Scotia

  • White, Katelyn L.;Kim, Jang-Kyun;Garbary, David J.
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.253-263
    • /
    • 2011
  • Phenotypic plasticity was examined in the economically and ecologically important brown alga Ascophyllum nodosum in southwestern Nova Scotia, considering specifically how nutrient loading affected its vegetative and reproductive features. To determine this, we examined morphometric changes in A. nodosum from two sites receiving direct effluent impacts from a land-based finfish aquaculture facility and from two control sites, approximately 2 km away from the aquaculture facility in opposite directions. Fronds from test sites were significantly younger than from control sites (5 y vs. 8 y); however, fronds from farm sites were significantly larger (219 g vs. 90 g) because of their higher growth rates. Thalli from farm sites had greater reproductive potential, as shown by numbers of receptacle initials (797 initials vs. 281 initials). These results suggest limited nutrient inflows from land-based aquaculture may positively affect adjacent Ascophyllum populations by inducing higher growth rates. We conclude that the coordination of effluent management from land-based aquaculture with natural resource harvesting of A. nodosum may be beneficial. Further study is necessary to determine the limits of nutrient loading for this potentially beneficial outcome.

Phenotypic Difference by the Indirect Cannibalism in Larvae of the Salamander, Hynobius leechii (간접적인 카니발리즘경험에 의한 한국산 도롱뇽 유생의 표현형의 변화)

  • Kim, Eun-Ji;Hwang, Ji-Hee;Chung, Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.342-347
    • /
    • 2012
  • This study was conducted to demonstrate the relationship between experience of cannibalism and difference of phenotype in the Korean salamander Hynobius leechii from March to April 2011. We examined whether the different polyphenism of larval salamander is induced as a result of indirect cannibalism in early life cycle. We divided into two groups(one group continuously exposed to the indirect cannibalism and the other group never exposed to the cannibalism). We measured the head width at the level of eyes(HWE), the largest head width(LHW) and snout-vent length(SVL) of the each larva then calculated the ratio of the head size by dividing HWE by LHW. We found that exposure of indirect cannibalism in early life cycle cause the different polyphenism. Our result means the larval salamander responded to the chemical cue from conspecific.