• Title/Summary/Keyword: PHD

Search Result 166, Processing Time 0.025 seconds

Present Status and Analysis for IEEE 11073 Personal Health Device Specializations (IEEE 11073 개인건강기기별 표준 현황 및 분석)

  • Park, Han-Na;Kim, Seung-Hwan;Yoo, Done-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.469-475
    • /
    • 2012
  • Increasing interest of life expectancy and health has made the u-health industry activating and the several international standard developing organizations(SDO) are dealing with u-health services and technologies. Among them, IEEE 11073 PHD(Personal Health Devices) Work Group is developing standards of personal health device communication for interoperability. There are many studies for introducing SDOs and analyzing the IEEE 11073-20601 standard. However, due to the rare study of PHD standards analysis, there are a lot of difficulties to utilize the standards. In this paper, present status of national and international SDOs including IEEE 11073 standards for PHD will be introduced. Moreover, device specialization standards such as thermometer, weighing scale, glucose meter, blood pressure monitor, electrocardiograph (ECG) etc.. will be analyzed based on the IEEE 11073-20601.

Data Processing and Numerical Procedures Influencing on Occupant Risk Indices (탑승자 안전지수에 영향을 주는 데이터 처리과정과 수치절차)

  • Kim, Kee-Dong;Ko, Man-Gi;Nam, Min-Kyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.215-226
    • /
    • 2007
  • To verify the performance of roadside barriers, occupant risk indices are calculated from acceleration and angular velocity data of vehicle crash tests. The occupant risk indices to be computed include THIV(Theoretical Head Impact Velocity), PHD(Post-impact Head Deceleration), ASI(Acceleration Severity Index), OIV(Occupant Impact Velocity) and ORA(Occupant Ridedown Acceleration). There is a confusion due to different values of occupant risk indices produced for the same test data because various computational procedures and data processing methods can be applied to compute them. To slove this problem the effects of various numerical procedures and data processing methods on occupant risk indices were investigated. If the sampling rate specified in the guidelines is used for full-scale vehicle crash tests, an interpolation of impact time and numerical integration methods do not result in an appreciable change of THIV and OIV. The way to determine 10msec moving average for PHD and zero offset of data processing should be specified in the guidelines because 10msec moving average and zero offset methods have a significant influence on occupant risk indices.

  • PDF

Nonparametric test on dimensionality of explantory variables (설명변수 차원 축소에 관한 비모수적 검정)

  • 서한손
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.2
    • /
    • pp.65-75
    • /
    • 1995
  • For the determination of dimension of e.d.r. space, both of Sliced Inverse Regression (SIR) and Principal Hessian Directions (PHD) proposed asymptotic test. But the asymptotic test requires the normality and large samples of explanatory variables. Cook and Weisberg(1991) suggested permutation tests instead. In this study permutation tests are actually made, and the power of them is compared with asymptotic test in the case of SIR and PHD.

  • PDF

Dual Detection-Guided Newborn Target Intensity Based on Probability Hypothesis Density for Multiple Target Tracking

  • Gao, Li;Ma, Yongjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5095-5111
    • /
    • 2016
  • The Probability Hypothesis Density (PHD) filter is a suboptimal approximation and tractable alternative to the multi-target Bayesian filter based on random finite sets. However, the PHD filter fails to track newborn targets when the target birth intensity is unknown prior to tracking. In this paper, a dual detection-guided newborn target intensity PHD algorithm is developed to solve the problem, where two schemes, namely, a newborn target intensity estimation scheme and improved measurement-driven scheme, are proposed. First, the newborn target intensity estimation scheme, consisting of the Dirichlet distribution with the negative exponent parameter and target velocity feature, is used to recursively estimate the target birth intensity. Then, an improved measurement-driven scheme is introduced to reduce the errors of the estimated number of targets and computational load. Simulation results demonstrate that the proposed algorithm can achieve good performance in terms of target states, target number and computational load when the newborn target intensity is not predefined in multi-target tracking systems.

Preprocessed Cholesky-Factor Downdatings for Observation Matrices (관측행렬에 대한 전처리 Cholesky-Factor Downdating 기법)

  • Kim, Suk-Il;Lee, Chung-Han;Jeon, Joong-Nam
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.359-368
    • /
    • 1996
  • This paper introduces PGD(Preprocessed Givens Downdating)and PHD(Preprocessed Hyperbolic Downdating) algorithms, wherein a multiple-row observation matrix $Z^T$ is factorized into a partial Cholesky factor Rz, such that $Z^T$ = $Q_zR_z, Q_zQ^T_z=I$, and then Rz is recursively downdated by using GD(Givens Downdating)and HD(Hyperbolic Dondating), respectively. Time complexities of PGD and PHD algorithms are $pn^2$$5n^3/6$$pn^2$$n^3/3$ flops, respectively, if p$\geq$n, while those of the existing GD and HD are known to be $5pn^2/2$ and $2pn^2$ flops,, respectively. This concludes that the factorization of observation matrices, which we call preprocessing, would improve the overall performance of the downdating process. Benchmarks on the Sun SPARC/2 system also show that preprocessing would shorten the required downdating times compared to those of downdatings without preprocessing. Furthermore, benchmarks also show that PHD provides better performance than PGD.

  • PDF

Comparison of the Pelvic Height Difference in Subjects with Lower Back Pain and in Normal Subjects in Different Postures (체중부하 자세에 따른 요통환자와 정상인의 양측골반높이에 대한 연구)

  • Lee, Ju-Hui;Lee, Wan-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.3
    • /
    • pp.28-37
    • /
    • 2004
  • Background: Lumbar joint dysfunction is reported to be the main cause of lower back pain (LBP). The purpose of this study was to evaluate the effect of joint dysfunction on the postural balance of the lower hack and pelvis in different normal activities such as walking or stair management. Also it was studied whether the status of LBP (intensity and duration of LBP, length of treatment) contributes to die pelvic height difference (PHD) in various postures. Subjects: 28 patients with LBP and 32 normal adult volunteers, 60 years of age or younger, who came to the Community Health Center and orthopedic clinics in Incheon, South Korea. Methods: In order to determine the accuracy of the manual angulometer method in measuring the PHD, it was compared to the pelvic x-ray method in selected subjects. In the manual angulometer method, the arm of the angulometer was placed on the top of both iliac crests. The PHD was measured in static upright stance, then one-legged stance, on the affected leg or unaffected leg each time. Information regarding the disease status was obtained through interviews. Visual assessment scale was used to grade the intensity of LBP. Data analysis was performed using SPSS 10.0/PC program. Homogeneity between the two groups was tested by 2-test and t-test. To compare the PHD of the subgroups, we used t-test, F-test and two-way ANOVA. Relationships among dependent variables were analyzed by Pearson correlation analysis. Conclusion: In patients with LBP, lumbar joint dysfunction causes lumbar and pelvic postural asymmetry during normal activities.

  • PDF

IoT Healthcare Communication System for IEEE 11073 PHD and IHE PCD-01 Integration Using CoAP

  • Li, Wei;Jung, Cheolwoo;Park, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1396-1414
    • /
    • 2018
  • With the proliferation of the Internet of Things (IoT) healthcare devices, significant interoperability issue arises where devices use proprietary data transfer protocols. The IHE PCD-01 standard has been suggested for the exchange of healthcare data in ISO/IEEE 11073 PHD data model. However, the PCD-01 is not efficient to be used in the IoT environment. This is because the use of SOAP for PCD-01 may be too complex to be implemented in the resource-constrained IoT healthcare devices. In this paper, we have designed a communication system to implement ISO/IEEE 11073 and IHE PCD-01 integration using the IETF CoAP. More specifically, we have designed the architecture and procedures, using CoAP, to seamlessly transmit the bio-signal from the tiny resource-constrained IoT healthcare devices to the server in a standardized way. We have also built the agent, gateway, and PCD-01 interface at the server, all of which are using the CoAP as a communication protocol. In order to evaluate the performance of the proposed system, we have used the PCD data to be transmitted over CoAP, MQTT, and HTTP. The evaluation of the system performance shows that the use of CoAP results in faster transaction and lesser cost than other protocols, with less battery power consumption.

u-Healthcare Monitoring System Design using by Smartphone based on Bluetooth Health Device Profile (Bluetooth Health Device Profile기반 스마트폰을 이용한 u-Healthcare 모니터링 시스템 설계)

  • Cho, Kyoung-Lae;Kim, Sang-Yoon;Kim, Jung-Han;Oh, Am-Suk;Kim, Gwan-Hyung;Jean, Jae-Hwan;Kang, Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1365-1369
    • /
    • 2013
  • Recently, the Personal Health Device(PHD) that measures various biometric data easily are highlighted for ensuring portability, scalability and interoperability among the device as well as needs for a standardization of managing information measured by. In this paper, we'd like to propose u-healthcare monitoring system that measure biometric data(Oxygen saturation, Body weight, ECG and Blood pressure) by PHD featured with transferring data into devices such as smartphone using Bluetooth Health Device Profile(HDP) based on the ISO/IEEE 11073.

A Design on HL7-based Diagnosis Support System for Home Healthcare Medical device Biometric Data And Medical Information (홈 헬스케어 의료기기 생체 데이터와 의료 정보의 활용을 위한 HL7 기반 진단지원 시스템 설계)

  • Heo, Sung-uk;Kang, Sung-in;Kim, Gwan-hyung;Choi, Sung-wook;Kim, Jong-Pan;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.947-949
    • /
    • 2013
  • 개인 휴대단말기로부터 측정된 생체정보 데이터가 PHR에 데이터베이스화되기 위해서는 응용 계층 표준 프로토콜인 HL7 CDA 표준에 따라야 한다. 하지만 국제 표준 HL7 CDA는 병원 시스템 간 의료정보 전달을 위한 프로토콜이기 때문에 개인 건강 기기로부터 측정된 생체 정보가 IEEE 11073 PHD 표준에 준하여 전달하더라도 HL7 CDA 프로토콜과 연동될 수 없다. 즉, 모바일 단말기 기반의 u-헬스케어 모니터링 서비스를 위해서는 IEEE 11073 PHD와 HL7 CDA 간 메시지 변환 게이트웨이가 필요하다. 이에 본 논문에서는 개인 휴대단말기를 통해 원격지에 있는 의료진이 사용자의 생체데이터를 실시간 관리하기 위해 ISO/IEEE 11073과 HL7 CDA 간 메시지 변환 게이트웨이 및 HL7 기반 진단지원시스템을 설계하였다.

  • PDF

U-헬스케어를 위한 IEEE 11073 기반 원격 생체정보 모니터링 보안 기술

  • Na, Jae-Uk;Yun, Eun-Jun;U, Yeon-Gyeong;Park, Jong-Tae
    • Information and Communications Magazine
    • /
    • v.29 no.10
    • /
    • pp.66-73
    • /
    • 2012
  • 전 세계적으로 노령인구가 급격히 증가하면서 만성질환자도 급증하고 있는 추세이다. 또한, 고도화된 현대사회와 과도한 업무, 서양화된 식습관, 그리고 운동부족은 젊은 층에서의 성인병 및 만성질환 증가를 부추기고 있다. 만성질환의 증가는 의료비 증가로 이어지고 결국은 국가재정 부담으로 돌아가게 된다. 만성질환자의 대부분은 지속적인 생체정보 측정과 이를 통한 관리가 필수적인데 매번 병원을 방문해 관리하는 것은 현실적으로나 비용적인 측면으로나 무리가 있는 것이 사실이다. 이러한 문제를 해결하고 언제 어디서나 시간과 공간에 구애받지 않고 생체정보를 원격에서 측정하고 관리 받을 수 있도록 하는 것이 U-헬스케어 서비스이다. U-헬스케어 서비스는 전통적인 의료 서비스에 정보통신 기술을 접목한 형태로 고령인구 및 만성질환자의 지속적인 관리를 위해 현재 주목 받고 있는 기술이다. U-헬스케어 서비스의 가장 중요하면서도 기본적인 요소는 원격지 사용자의 생체정보를 측정하고 수집할 수 있는 원격 생체정보 모니터링 기술이다. 이를 위해서는 다양한 종류의 생체정보 측정기기가 필요한데 장비나 시스템 간 통신 인터페이스의 상호 호환성이 매우 중요하다. 본 논문에서는 원격 생체정보 모니터링을 위한 표준 기술인 IEEE 11073 PHD를 소개하고 현재 IEEE 11073 PHD 표준에서 명시하고 있지 않은 보안 문제점과 필요 기술들을 분석하고자 한다. 또한, IEEE 11073 PHD에서 IEEE 11073-20601 표준 프로토콜을 이용한 사용자 인증 구조를 제안한다.