• Title/Summary/Keyword: PHC말뚝 수평재하시험

Search Result 4, Processing Time 0.023 seconds

Lateral Behavior of Hybrid Composite Piles Using Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 수평거동 특성)

  • Park, No-Won;Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.133-143
    • /
    • 2018
  • Concrete filled steel tube (PCFT) piles, which compose PHC piles inside thin steel pipes, were developed to increase the flexural strength of the pile with respect to the horizontal load. In order to compare the flexural strength of PCFT pile with that of steel pipe pile, several flexural tests were performed on the PCFT and steel pipe piles with the same diameter and the P-M curves for both piles were constructed by the limit state design method. Four test piles were also installed and lateral pile load tests were performed to compare the lateral load capacities and lateral behaviors of the hybrid composite piles using PCFT piles and the existing piles such as HCP and steel pipe piles. The flexural test results showed that the flexural strength of PCFT piles was 18.7% higher than that of steel pipe piles with thickness of 12mm and the same diameter, and the mid-span deflection of piles was 50% lower than that of steel pipe piles at the same bending moment. From the P-M curves, it can be seen that the flexural strength of PCFT piles subjected to the vertical load is greater than that of steel pipe piles, but the flexural strength of PCFT piles subjected to the pullout load is lower than that of steel pipe piles. In addition, field pile load tests showed that the PCFT hybrid composite pile has 60.5% greater lateral load capacity than the HCP and 35.8% greater lateral load capacity than the steel pipe pile when the length of the upper pile in hybrid composite piles was the same.

A Comparison between predicted and measured values for lateral bearing capacity of PHC pile in weathered Granite soil (화강풍화토 지반에 타입된 PHC 말뚝의 수평지지력에 대한 추정치와 실측치의 비교)

  • 오재화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.144-150
    • /
    • 2000
  • This study dealt with the comparison of lateral baring capacity for vertical PHC pile between predicted and measured values driven in weathered granite soils to build world cup gymnasium in Kwangju area. Recently, the calculation of horizontal bearing capacity of piles foundation has been considered very important for earthquake or wind resistant design in Korea. During this study , Matlock & Reese, Broms and Chang's methods were selected in prediction of lateral resistant of PHC piles. As for case study, the prediction values were compared with 5 measured ones based on ASTM. The result showed that prediction values proposed by Matlock & Reese , Chang and Broms were smaller that real values. Three proposed methods by Matlock & Reese and Chang based on lateral deflection and Broms by ultimated lateral resistance turned out valid in view of engineering practice.

  • PDF

An Experimental Study on Behavior of Composite Pile (복합말뚝 거동에 대한 실험적 연구)

  • Lee, Seungho;Kim, Dongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • Demand on pile foundation is rapidly increasing, as an investment for the social overhead capital getting enlarged in Korea. Steel piles are in general use in construction due to their workability and superior durability. But the recent global rise in steel price led the engineers to seeking for an economical alternative that still has equivalent characteristics as compared with the steel pile. In this regard a composite pile, in which steel suitable to resist the tensile stress are used in the upper part of the pile, while less expensive PHC pile is adopted in the lower part of the pile where axial stress should prevail, was studied and both pile loading test and load transfer test were performed for the piles which have been constructed for the foundation of a bridge in Korea. These test results and some theories already issued were compared, and it was shown that p-y nonlinear analysis gave rise to similar results.

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.