• Title/Summary/Keyword: PHARMACOKINETICS

Search Result 889, Processing Time 0.028 seconds

Population Pharmacokinetics for Gentamicin in Korean and Caucasian Appendicitis Patients Using Nonparametric Expected Maximum (NPEM) Algorithm (한국인과 코카시안 충수돌기염 환자에서 비모수적 기대최대치(NPEM) 연산방법에 의한 겐타마이신의 모집단 약물동태학)

  • Burm, Jin-Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.74-80
    • /
    • 2011
  • Population pharmacokinetics for gentamicin were compared with 20 Korean patients (14 male and 6 female) and 25 Caucasian appendicitis patients (16 male and 9 female). Two to six blood specimens were collected from all patients at the following times : just before a regularly scheduled infusion and at 0.5 hour after the end of a 0.5 hour infusion. Nonparametric expected maximum(NPEM) algorithm for population modeling was used. The estimated parameters were the elimination rate constant(K), the slope(KS) of the relationship between K versus creatinine clearance(Ccr), the apparent volume of distribution (V), the slope(VS) of the relationship between V versus weight, gentamicin clearance(CL) and the slope(CS) of the relationship between CL versus Ccr and the V. The output includes two marginal probability density function(PDF), means, medians, modes, variance, skewness, kurtosis, and CV%. The mean K(KS) were$0.402{\pm}0.129hr^{-1}$ ($0.00486{\pm}0.00197[hr{\cdot}mL/min/1.73m^2]^{-1}$) and $0.425{\pm}0.137hr^{-1}$($0.00432{\pm}0.00168[hr{\cdot}mL/min/1.73m^2]^{-1}$) for Korean and Caucasian populations, respectively. The mean V(VS) were not different at $14.3{\pm}3.69L$($0.241{\pm}0.0511L/kg$) and $15.8{\pm}4.81L$($0.236{\pm}0.0531L/kg$) for Korean and Caucasian populations, respectively (P>0.2). The mean CL(CS) were $5.68{\pm}1.69L/hr$ ($0.0714{\pm}0.0222L/kg[hr{\cdot}mL/min/1.73m^2]$) and $6.29{\pm}1.84L/hr$ ($0.0629{\pm}0.0189L/kg[hr{\cdot}mL/min/1.73m^2]$) for Korean and Caucasian populations, respectively. There are no differences in gentamicin pharmacokinetics between Korean and Caucasian appendicitis patients.

Effects of mixed formulation of tamoxifen and blue honeysuckle on the pharmacokinetics profiles of tamoxifen after single oral administration

  • Hu, Jin-Ryul;Jang, Tae-Woo;Kang, Su-Jin;Ku, Sae-Kwang;Choi, Seong-Hun;Lee, Young-Joon
    • The Journal of Korean Medicine
    • /
    • v.40 no.4
    • /
    • pp.1-15
    • /
    • 2019
  • Objectives: Here, we investigated the effects of concentrated and lyophilized powders Blue honeysuckle (BH) on the PK of tamoxifen, to establish the pharmacokinetics (PK) profiles as one of essential process in new drug development. Methods: After single oral treatment of 0.4 mg/ml of tamoxifen or tamoxifen 0.4 with BH 40, 20 and 10 mg/ml, the plasma were collected at 0.5 hr before administration, 0.5, 1, 2, 3, 4, 6, 8 and 24 hr after end of single or mixed formula treatment. Plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. Tmax, Cmax, AUC, t1/2 and MRTinf were analyzed using noncompartmental PK data analyzer programs. Results: Tamoxifen and BH 40 mg/ml did not induce any significant change on the plasma tamoxifen concentrations, while significant decreases were observed in tamoxifen and BH 10 mg/ml from 2 to 8 hr as compared with tamoxifen only, respectively. Furthermore, significant increases of Tmax in tamoxifen and BH 40 mg/ml, significant decreases of Cmax in tamoxifen and BH 20 mg/ml, significant decreases of AUC0-t, AUC0-inf and MRTinf in tamoxifen and BH 10 mg/ml were demonstrated as compared with tamoxifen only. Conclusion: Taken together, tamoxifen and BH 10 mg/ml induced significant decrease of the oral bioavailability of tamoxifen, while tamoxifen and BH 40 or 20 mg/ml did not critically influenced, suggesting formulated BH concentration-independencies. It, therefore, seems to be needed that pharmacokinetic study after repeated administration should be tested to conclude the effects of BH on the pharmacokinetics of tamoxifen.

Effects of Kaempferol, an Antioxidant, on the Bioavailability and Pharmacokinetics of Nimodipine in Rats

  • Park, Ji-Won;Choi, Jin-Seok;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.301-307
    • /
    • 2011
  • The aim of this study was to investigate the effects of kaempferol on the pharmacokinetics of nimodipine in rats. Nimodipine and kaempferol interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in kaempferol being taken concomitantly with nimodipine as a combination therapy to treat orprevent cardiovascular disease. The effect of kaempferol on P-gp and CYP3A4 activity was evaluated and Pharmacokinetic parameters of nimodipine were determined in rats after an oral (12 mg/kg) and intravenous (3 mg/kg) administration of nimodipine to rats in the presence and absence of kaempferol (0.5, 2.5, and 10 mg/kg). Kaempferol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $17.1{\mu}M$. In addition, kaempferol significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, the area under the plasma concentration-time curve ($AUC_{0-\infty}$) and the peak plasma concentration ($C_{max}$) of nimodipine significantly increased, respectively. Consequently, the absolute bioavailability of nimodipine in the presence of kaempferol (2.5 and 10 mg/kg) was 29.1-33.3%, which was significantly enhanced compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.30- to 1.49-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine was not affected by kaempferol in contrast to those of oral nimodipine. Kaempferol significantly enhanced the oral bioavailability of nimodipine, which might be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and /or in the liver and to inhibition of the P-gp efflux transporter in the small intestine by kaempferol. The increase in oral bioavailability of nimodipine in the presence of kaempferol should be taken into consideration of potential drug interactions between nimodipine and kaempferol.

Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line

  • Damte, Dereje;Lee, Seung-Jin;Birhanu, Biruk Tesfaye;Suh, Joo-Won;Park, Seung-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2153-2159
    • /
    • 2015
  • Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation — only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level

  • Choi, Min-Koo;Song, Im-Sook
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.199-205
    • /
    • 2016
  • This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration ($2-75{\mu}M$) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was $1.9{\mu}L/min$ while passive diffusion clearance was $0.31{\mu}L/min$. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as $C_{max}$ and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.

Pharmacokinetics and Tissue Distribution of Recombinant Human Erythropoietin (DA-3285) in the Laboratory Animals (Recombinant human erythropoietin (DA-3285)의 실험동물에서의 약동력학 및 조직분포)

  • 심현주;이응두;이종진;김흥재;이상득;이성희;김원배;양중익
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 1996
  • The pharmacokinetics and tissue distribution of DA-3285 (recombinant human erythropoietin, recently manufactured by Research Laboratories of Dong-A Pharmaceutical Company) were studied in the laboratory animals. The plasma, urine, and tissue concentration of DA-3285 were measured by a double-antibody sandwich enzyme immunoassay. After intravenous administration of DA-3285, 20, 100, 500 and 2500 units/kg to rats, the plasma concentrations declined polyexponentially with the terminal half-lives of 2.15, 2.10, 2.31, and 2.35 hr, respectively. Total body clearance (20.7∼26.6 mι/hr/kg) and apparent volume of distribution at steady state (57.2∼70.1 mι/kg) were independent of the dose and AUC increased proportionally with the dose. The renal clearance was much lower than total body clearance, suggesting that extrarenal clearance, presumably metabolism , plays a significant role in elimination of DA-3285. In all rat tissues, the tissue to plasma ratios were smaller than unity, indicating less affinity of DA-3285 to rat tissues and was proved by considerably less value of Vdss. After 3 times a week for consecutive 3 weeks i.v. administration of DA-3285, 100 units/kg to rats, the plasma concentrations and pharmacokinetic parameters of DA-3285 were not significantly different from those in a single administration. After s.c. administration to the rat, plasma concentrations of DA-3285 peaked at 6 hr and the extent of bioavailability was 26.7%. In mice, rabbits and dogs, at DA-3285 dose of 100 units/kg, the mean terminal haw-lives were 2.78, 3.05, and 4.01 hr, respectively. Compared with reported data in the literatures, DA-3285 has similar properties to rh-EPO manufactured by other companies in view of pharmacokinetics.

  • PDF

Rapid Quantitative Analysis of Vancomycin in Human Plasma and Urine Using LC-MS/MS (LC - MS/MS를 이용한 혈장과 뇨중에서 Vancomycin의 빠른정량분석)

  • Kim, Hohyun;Roh, Hyeongjin;Han, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.410-416
    • /
    • 2002
  • In this study, a new quantitative analytical method has been developed for the rapid determination of vancomycin in human plasma and urine using liquid chromatography/tandem mass spectrometry (LC - MS/MS). Chromatography was carried out on a $C_{18}$ XTerra MS column ($2.1{\times}30mm$) with a particle size of $3.5{\mu}m$. The mobile phase was 0.25% formic acid in 10% acetonitrile and the flow rate was $250{\mu}L/min$. Vancomycin and caffeine (internal standard) were detected by MS/MS using multiple reaction monitoring (MRM). Vancomycin gives a predominant doubly protonated precursor molecule ($[M+2H]^{2+}$) at m/z 725.0 and a corresponding product ion of m/z 100.0. Detection of vancomycin was good, accurate and precise, with a limit of detection of 1 nM in plasma. The calibration curves for vancomycin in human plasma was linear in a concentration range of $0.01{\mu}M$ - $100{\mu}M$ for plasma. This method has been successfully applied to determine the concentration of vancomycin in human plasma and urine from pharmacokinetic study and relative studies.

Modern Methods for Analysis of Antiepileptic Drugs in the Biological Fluids for Pharmacokinetics, Bioequivalence and Therapeutic Drug Monitoring

  • Kang, Ju-Seop;Park, Yoo-Sin;Kim, Shin-Hee;Kim, Sang-Hyun;Jun, Min-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.2
    • /
    • pp.67-81
    • /
    • 2011
  • Epilepsy is a chronic disease occurring in approximately 1.0% of the world's population. About 30% of the epileptic patients treated with availably antiepileptic drugs (AEDs) continue to have seizures and are considered therapy-resistant or refractory patients. The ultimate goal for the use of AEDs is complete cessation of seizures without side effects. Because of a narrow therapeutic index of AEDs, a complete understanding of its clinical pharmacokinetics is essential for understanding of the pharmacodynamics of these drugs. These drug concentrations in biological fluids serve as surrogate markers and can be used to guide or target drug dosing. Because early studies demonstrated clinical and/or electroencephalographic correlations with serum concentrations of several AEDs, It has been almost 50 years since clinicians started using plasma concentrations of AEDs to optimize pharmacotherapy in patients with epilepsy. Therefore, validated analytical method for concentrations of AEDs in biological fluids is a necessity in order to explore pharmacokinetics, bioequivalence and TDM in various clinical situations. There are hundreds of published articles on the analysis of specific AEDs by a wide variety of analytical methods in biological samples have appears over the past decade. This review intends to provide an updated, concise overview on the modern method development for monitoring AEDs for pharmacokinetic studies, bioequivalence and therapeutic drug monitoring.

Effects of Glipizide on the Pharmacokinetics of Losartan after Oral and Intravenous Administration in Rats (흰쥐에서 글리피지드가 로살탄의 약물동태에 미치는 영향)

  • Yoo, Jin-Wook;Choi, Jin-Seok;Choi, Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.240-246
    • /
    • 2011
  • The present study was to investigate the effect of glipizide on the pharmacokinetics of losartan in rats. Losartan was administered intravenously (3 mg/kg) and orally (9 mg/kg) in the presence and absence of glipizide (0.3 and 1 mg/kg) to rats. The pharmacokinetic parameters of losartan were significantly altered by the presence of glipizide compared with the control group (given losartan alone). Presence of glipizide significantly (p<0.05, 0.3 mg/kg) increased the area under the plasma concentration-time curve (AUC) of losartan by 48.2% and peak plasma concentration ($C_{max}$) of losartan by 47.4%. Consequently, the absolute bioavailability (AB%) of losartan in the presence of glipizide was 38%, which was enhanced significantly (p<0.05) compared to that in the oral control group (25%). The relative bioavailability (RB%) of losartan increased by 1.18- to 1.48-fold in the presence of glipizide. However, there was no significant change in the peak plasma concentration ($T_{max}$) and terminal half-life ($T_{1/2}$) of losartan in the presence of glipizide. In contrast, glipizide did not affect the pharmacokinetics of intravenous losartan. In conclusion, the presence of glipizide significantly enhanced the oral bioavailability of losartan, implying that glipizide might be mainly to inhibit the cytochrome P450 (CYP) 2C9-mediated metabolism, resulting in reducing gastrointestinal and/or hepatic first-pass metabilism of losartan rather than in reducing P-glycoprotein-mediated efflux and renal elimination of losartan. Concurrent use of glipizide with losartan should require close monitoring for potential drug interactions.

Effect of Jaeumkanghwatang (JEKHT), a Polyherbal Formula on the Pharmacokinetics Profiles of Tamoxifen in Male SD Rats (1) - Single Oral Combination Treatment of Tamoxifen 50 mg/kg with JEKHT 100 mg/kg within 5 min -

  • Kwak, Min A;Park, Soo Jin;Park, Sung Hwan;Lee, Young Joon;Ku, Sae Kwang
    • The Journal of Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • Objectives: The objective of this study was to elucidate the effect of Jaeumkanghwatang (JEKHT) on the plasma concentration and pharmacokinetics of tamoxifen in combination therapy as a process of the comprehensive and integrative medicine against breast cancer. Methods: After 50 mg/kg of tamoxifen treatment, JEKHT 100 mg/kg was orally administered within 5 min. The plasma were collected at 30 min before administration, 30min, 1, 2, 3, 4, 6, 8 and 24 hrs after end of JEKHT treatment, and plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. PK parameters of tamoxifen ($T_{max}$, $C_{max}$, AUC, $t_{1/2}$ and $MRT_{inf}$) were analysis as compared with tamoxifen single administered rats. Results: JEKHT did not influenced on the plasma concentrations and pharmacokinetics of tamoxifen after single oral co-administration, within 5min except for some negligible effects on plasma concentration. The $T_{max}$, $C_{max}$, AUC, $t_{1/2}$ and $MRT_{inf}$ of tamoxifen in co-administered rats were quite similar to those of tamoxifen single treated rats. Conclusions: Based on the results of the present study, JEKHT did not influenced on the oral bioavailability of tamoxifen, when they were single co-administered within 5min. However, more detail pharmacokinetic studies should be tested to conclude the possibilities that can be used as comprehensive and integrative therapy with JEKHT and tamoxifen for breast cancers, when they were co-administered, like the effects on the pretreatment of JEKHT and after repeat co-administrations.