Browse > Article

Rapid Quantitative Analysis of Vancomycin in Human Plasma and Urine Using LC-MS/MS  

Kim, Hohyun (Department of Pharmacokinetics, Seoul Medical Science Institute (SCL))
Roh, Hyeongjin (Department of Pharmacokinetics, Biocore. Co. Ltd.)
Han, Sang-Beom (Department of Pharmacokinetics, Seoul Medical Science Institute (SCL))
Publication Information
Analytical Science and Technology / v.15, no.5, 2002 , pp. 410-416 More about this Journal
Abstract
In this study, a new quantitative analytical method has been developed for the rapid determination of vancomycin in human plasma and urine using liquid chromatography/tandem mass spectrometry (LC - MS/MS). Chromatography was carried out on a $C_{18}$ XTerra MS column ($2.1{\times}30mm$) with a particle size of $3.5{\mu}m$. The mobile phase was 0.25% formic acid in 10% acetonitrile and the flow rate was $250{\mu}L/min$. Vancomycin and caffeine (internal standard) were detected by MS/MS using multiple reaction monitoring (MRM). Vancomycin gives a predominant doubly protonated precursor molecule ($[M+2H]^{2+}$) at m/z 725.0 and a corresponding product ion of m/z 100.0. Detection of vancomycin was good, accurate and precise, with a limit of detection of 1 nM in plasma. The calibration curves for vancomycin in human plasma was linear in a concentration range of $0.01{\mu}M$ - $100{\mu}M$ for plasma. This method has been successfully applied to determine the concentration of vancomycin in human plasma and urine from pharmacokinetic study and relative studies.
Keywords
Liquid Chromatography; Tandem Mass Spectrometry; Vancomycin; Pharmacokinetics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. E. VanScoy, S. N. Cohen, J. E. Geraci and J. A. Washington, Mayo Clin. Proc., 52, 216-219 (1977).
2 M. T. Suller and d. Lloyd, J. Appl. Microbiol., 92(5), 866-872 (2002).
3 J. Luksa and A. Marusic, J. Chromatogr. B, 667, 277-281 (1995).
4 L. O. White, H. A. Holt, D. S. Reeves and A. P. MacGowan, J. Antimicrob. Chemother., 39(3), 355-361 (1997).
5 H. Hosotsubo, J. Chromatogr., 487(2), 421-427 (1989).
6 B. Robredo, K. V. Singh, F. Baquero, B.E. Murray and C. Torres, J. Food Microbiol., 54(3), 197-204 (2000).
7 D. Farin, G. A. Piva, I. Gozlan and R. Kitzes-Cohen, J. Pharm. Biomed. Anal., 18(3), 367-372 (1998).
8 P. E. Reynolds, Eur. J. Clin. Microbiol. Infect. Dis., 8, 943-950 (1989).
9 D. W. Backes, H. I. Aboleneen and J. A. Simpson, J. Pharm. Biomed. Anal., 16, 1281-1287 (1998).
10 R. Lorenz, M. Herrmann, A. M. Kassem, N. Lehn, H. Neuhaus and M. Classen, Endoscopy, 30(8), 708-712 (1998).
11 L. M. Perino and B. A. Mueller, Ann Pharmacother., 27(7-8), 892-893 (1993).
12 E. M. Tracy and s. DiTaranto, J. Pediatr. Oncol. Nurs., 19(2), 60-61 (2002).
13 P. Favetta, J. Guitton, N. bleyzac, C. Dufresne and J. Bureau, J. Chromatogr. B, 751, 377-382 (2001).
14 R. Nagarajan, Glycopeptide Antibiotics, 63, ISBN 0-8247-9193 (1994).
15 A. L. Somerville, D. H. wright and J. C. Rotschafer, Pharmacotherapy, 19(6), 702-707 (1999).
16 J. J. McAtee, S. L. Castle, Q. Jin and D. L. Boger, Bioorg. Med. Chem. Lett., 12(9), 1319-1322 (2002).
17 J. E. Geraci and P. E. Hermans, Mayo Clin. Proc., 58, 88-91 (1983).
18 J. E. Geraci, Mayo Clin. Proc., 52, 631-634 (1977).
19 J. Bauchet, E. Pussard and J. J. Garaud, J. Chromatogr., 414, 472-476 (1987).