• Title/Summary/Keyword: PGL

Search Result 33, Processing Time 0.02 seconds

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

Preparation and Release Properties of Oromucosal Moisture-activated Patches Containing Lidocaine or Ofloxacin (오플록사신 및 리도카인 함유 수분 감응성 구강점막 패취제의 제조 및 방출 특성)

  • Gwak, Hye-Sun;Song, Yeon-Hwa;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.417-422
    • /
    • 2005
  • This study was aimed to design and formulate the moisture-activated patches containing ofloxacin and lidocaine for antibacterial and local anesthetic action. The solubility of lidocaine at $32^{\circ}C$ in various vehicles decreased in the rank order of PG $759.5{\pm}44.5\;mg/mL$ > PGL > IPM > PEG 300 > PEG 400 > Ethanol > PGMC > DGME > PGML > OA > $Captex^{\circledR}\;300$ > $Captex^{\circledR}\;200$ > water $(4.0{\pm}0.1\;mg/mL)$. Ofloxacin revealed very low solubility, which the highest solubility was obtained from PEG 400 $(18.7{\pm}6.3\;mg/mL)$ among the vehicles used. The addition of lactic acid increased the solubility of ofloxacin dramatically; the solubility at 5% lactic acid was $133.7{\pm}9.7\;mg/mL$. As $2-hydroxypropyl-{\beta}-cyclodextrin$ was added at the concentrations of 40, 80, 120, 160 and 200 mM, the solubilities of lidocaine and ofloxacin were enhanced up to three and two times, respectively, with concentration-dependent pattern. Gel intermediates for filmtype patches were prepared with mucoadhesive polymer, viscosity builders, lidocaine or ofloxacin at pH values from 5 to 7. Gels were cast onto a release liner and dried at room temperature. Dried patch was attached onto an adhesive backing layer, thus forming a patch system. Patches containing a single drug component were characterized by in vitro measurement of drug release rates through a cellulose barrier membrane. The release study was carried out at $37^{\circ}C$ using a Franz-type cell. Receptor solutions were isotonic phosphate buffers (pH 7.4). Samples $(100\;{\mu}L)$ were taken over 24 hours and quantitated by a verified HPLC method. The releases from all tested were proportional to the square root of time. The release rates were 0.9, 157.3 and $281.7\;{\mu}g/cm^{2}/min^{1/2}$ for the lidocaine patches and 19.8,37.2 and $50.7\;{\mu}g/cm^{2}/min^{1/2}$ for the ofloxacin patches at the concentrations of 0.3, 0.5 and 1 %, respectively. The release rates were dose dependent in both drug patches $(R^{2}\;=\;0.9077\;for\;lidocaine;\;R^{2}\;=\;0.9949\;for\;ofloxacin)$ and those were also thickness-dependent $(R^{2}\;=\;0.9246\;for\;lidocaine;\;R^{2}\;=\;0.9512\;for\;ofloxacin)$.

Effects of the b-FGF to Early Revascularization and Epithelial Regeneration in the Rabbit's Tracheal Autograft (염기 섬유아세포 성장인자가 토끼기관의 자가이식편의 초기 혈관재형성 및 상피세포 재생에 미치는 영향)

  • 성숙환;원태희
    • Journal of Chest Surgery
    • /
    • v.30 no.6
    • /
    • pp.559-565
    • /
    • 1997
  • Donor airway ischemia is a significant problem after tracheal replacement with homograft or lung transplantation, Several factors such as omentopexy, heparin, PGl2 and fibroblast growth factor, have been shown to induce angiogenesis in vitro and in vivo. This study was designed to investigate whether omentopexy and basic flbroblast growth factor can enhance rabbit tracheal revascularization and epithelial regeneration, Three different experiments were performed with New Zealand white rabbit. In group I(n= 15 control group), only coNical tracheal autotransplantation was done. In group II(n= 15), cervical tracheal autotransplantation with omentopexy was done through subcutaneous route. In group III(n= 15), cervical tracheal autotransplantation was done and lug basic flbroblast growth factor was applied. After 3, 7 and 14 days, the animals were sacrificed. The extent of revascularization was investigated by means of uptake of the human serum albumin labelled with 99m technetium, and epithelial regeneration were assessed by means of light microscope. In the group investigated at day 3, there was statistically significant high tracheal revascularization in group III(p<0.05), but no difference at 7 and 14 days. And epithelial regenerations at day 3 were better in group III(p<0.05), and at day 7 in group II and III. But there was no difference at day 14. We concluded that b-FGF can enhance the revascularization and epithelial regeneration of the tracheal autograft especially in early phase.

  • PDF