• 제목/요약/키워드: PET degradation

검색결과 67건 처리시간 0.03초

식용버섯과 진균 교차 배양을 활용한 플라스틱 필름의 생물학적 분해효과 (Biodegradation effect of cross-cultivated fungi and edible mushrooms on plastic films)

  • 최두호;이은지;안기홍;이강효
    • 한국버섯학회지
    • /
    • 제22권1호
    • /
    • pp.31-36
    • /
    • 2024
  • 친환경적인 플라스틱 분해를 위한 연구의 한 종류로 버섯균을 활용한 플라스틱 분해 유도를 위해 본 실험을 진행하였다. 본 실험에서는 주변에서 구하기 쉽고 인체에 유해할 가능성이 낮은 식용 버섯을 활용하여 인체 안정성을 더한 플라스틱 분해 기술을 개발하고자 하였으며 31 종의 버섯균들을 대상으로 플라스틱 PE, PS, PET 필름에 대한 분해 효과를 관찰하였다. 본 연구과정에서 4종의 버섯(종이비늘버섯, 영지버섯, 갈색먹물버섯, 느타리)에 의한 플라스틱 분해 효과를 관찰하였으며, 진균과의 교차 배양을 통해 플라스틱 분해 효과를 촉진시킬 수 있는지를 확인하였다. 해당 확인 과정에서 PS에 대한 분해 효과가 가장 높게 나타났으며 이는 진균 Asp. nidulans의 작용에 의한 것이었다. 그러나 Asp.nidulans가 가진 유해성 (Henriet et al., 2012)으로 인해 인체에 무해한 식용버섯균의 활용이 필요하다고 판단되며 비록 버섯균만을 활용한 분해 결과는 저조하나 진균과 버섯균을 교차 배양한 분해 효과는 Asp. nidulans에 의한 분해 효과에 근접하다고 볼 수 있다. 또한 PET에 대해서는 오히려 PT_2822_nig의 사례와 같이 교차 배양한 샘플이 더 높은 수치의 플라스틱 분해 효과를 보였다. 비록 두 실험 결과값들이 유의성을 보이지 못해 추가적인 보완실험이 요구되고 있으나 해당 실험을 통해 버섯균을 활용한 플라스틱 분해 유도 또한 세균, 진균, 밀웜 등을 활용한 분해 유도 과정과 비교하여 경쟁성을 보이고 있다.

Hydrazine/Methanol 처리에 의한 PET film의 표면특성과 염색성 (Surface Characterization and Dyeing Property of PET Film Treated with Hydrazine Hydrate in Methanol)

  • 성우경;조현혹;김경환
    • 한국염색가공학회지
    • /
    • 제1권1호
    • /
    • pp.26-34
    • /
    • 1989
  • The selective chemical degradation or etching of PET based on an organic amine attack on the ester group. The techniques involves the chemical removal of loss ordered amorphous regions or crystalline regions, which are essentially unaffected by the degradative etchant. Thus, most of previous studies have limited to consideration which has been given to structural changes taking place. Therefore, this study was carried out to investigate surface characterization, dyeing properties of PET film hydrazinolyzed with hydrazine hydrate in methanol. PET film was treated with 30% hydrazine hydrate in methanol at $30^\circ{C}$ for various time intervals. The total surface tension of treated PET increased, the dispersion force decreased and the hydrogen bonding force increased. The equilibrium dye adsorption, dyeing rate and apparent diffusion coefficient of acid dyes increased, and the apparent activation energies of diffusion decreased.

  • PDF

아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성 (Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer)

  • 안다정;최철훈;이재웅;이상오
    • 한국염색가공학회지
    • /
    • 제29권3호
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.

열안정제에 의한 제전성 폴리에틸렌테레프탈레이트의 고유점도 및 수분율의 거동 변화 (Behavior of Intrinsic Viscosity and Moisture Content of Antistatic Polyethyleneterephthalate by Thermal Stabilizer)

  • 김문찬;이철규
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.707-710
    • /
    • 1999
  • 제전성 폴리에틸렌테레프탈레이트(PET)에 열안정제를 첨가하여 수분율과 고유점도의 거동변화를 연구하였다. 제전 PET의 최종 수분율은 건조시간보다는 건조온도의 함수로 나타났다. 용융방사후 제전 PET의 고유점도 강하는 수분율이 증가함에 따라 증가했다. 용융방사후 제전 PET의 고유점도가 감소했는데 이것은 제전제 성분중 폴리옥시알킬렌글리콜(POAG) 성분의 열화 열분해에 의한 것이다. 열안정제로서 trimethylphosphate(TMP)를 사용하는 것보다 triphenylphosphate(TPP)를 사용한 것이 더 효과적이었다. 열안정제로서 TPP를 300ppm 사용한 것이 용융방사후 고유점도의 저하가 적었다.

  • PDF

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

자기 지도 학습훈련 기반의 Noise2Void 네트워크를 이용한 PET 영상의 잡음 제거 평가: 팬텀 실험 (The Evaluation of Denoising PET Image Using Self Supervised Noise2Void Learning Training: A Phantom Study)

  • 윤석환;박찬록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권6호
    • /
    • pp.655-661
    • /
    • 2021
  • Positron emission tomography (PET) images is affected by acquisition time, short acquisition times results in low gamma counts leading to degradation of image quality by statistical noise. Noise2Void(N2V) is self supervised denoising model that is convolutional neural network (CNN) based deep learning. The purpose of this study is to evaluate denoising performance of N2V for PET image with a short acquisition time. The phantom was scanned as a list mode for 10 min using Biograph mCT40 of PET/CT (Siemens Healthcare, Erlangen, Germany). We compared PET images using NEMA image-quality phantom for standard acquisition time (10 min), short acquisition time (2min) and simulated PET image (S2 min). To evaluate performance of N2V, the peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE), structural similarity index (SSIM) and radio-activity recovery coefficient (RC) were used. The PSNR, NRMSE and SSIM for 2 min and S2 min PET images compared to 10min PET image were 30.983, 33.936, 9.954, 7.609 and 0.916, 0.934 respectively. The RC for spheres with S2 min PET image also met European Association of Nuclear Medicine Research Ltd. (EARL) FDG PET accreditation program. We confirmed generated S2 min PET image from N2V deep learning showed improvement results compared to 2 min PET image and The PET images on visual analysis were also comparable between 10 min and S2 min PET images. In conclusion, noisy PET image by means of short acquisition time using N2V denoising network model can be improved image quality without underestimation of radioactivity.

자외선 조사에 의한 폴리에스터의 광가교 (Photocrosslinking of Polyester by UV irradiation)

  • 윤득원;장진호
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제45차 학술발표회
    • /
    • pp.7-7
    • /
    • 2011
  • Poly(ethylene terephthalate)(PET) is one of the most widely used materials in textile industry. It can have a low cost, silk-like handle, and excellent mechanical properties. Low thermal stability of PET had been a common problem limiting its high temperature application. The polyester have been known to have the disadvantage of degradation under ionized irradiation compared to crosslikable polymers such as polyethylene, polypropylene and polystylene. To improve thermal stability of PET, the PET films were photocrosslinked by UV irradiation. A hydrogen-abstractable photoinitiator was used to photocrosslink of PET by continuous UV irradiation. Photoinitiator addition increased the gel fraction. The photocrosslinking was attributed to the recombination of PET radicals generated upon UV irradiation, which was enhanced by the hydrogen abstraction of the PET polymer chains by the added photoinitiator. Also the crosslinked PET showed higher thermal stability and mechanical strength with increasing UV energy. Polyester type films such as poly(ethylene naphthalate)(PEN) and poly(butylene terephthalte)(PBT) were also increased the gel fraction and improved thermal stability and mechanical properties by UV irradiation.

  • PDF

Behaviour of recycled aggregate concrete beam-column connections in presence of PET fibers at the joint region

  • Marthong, Comingstarful
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.669-679
    • /
    • 2018
  • In this paper the behavior of reinforced concrete (RC) beam-column connections under cyclic loading was analyzed. The specimens, manufactured in a reduced-scale were made of (a) recycled aggregate concrete (RAC) by replacing 30% of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) and (b) RAC incorporating Polyethylene terephthalate (PET) fiber i.e., PET fiber-reinforced concrete (PFRC) at the joint region. PET fiber (aspect ratio=25) of 0.5% by weight of concrete used in the PFRC mix was obtained by hand cutting of post-consumer PET bottles. A reference specimen was also prepared using 100% of NCA and subjected to similar loading sequence. Comparing the results the structural behavior under cyclic loading of RAC specimens are quite similar to the reference specimens. Damage tolerance, load resisting capacity, stiffness degradation, ductility, and energy dissipation of the RAC specimens enhanced due to addition of PET fibers at the joint region. PFRC specimens also presented a lower damage indices and higher principal tensile stresses as compared to the RAC specimens. The results obtained gave experimental evidence on the feasibility of RAC for structural use. Using PET fibers as a discrete reinforcement is recommended for improving the seismic performance of RAC specimens.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

PET 생분해에 관여하는 방선균 유래 PETase 유전자의 이종숙주 발현 (Heterologous Expression of Streptomyces PETase Gene Involved in PET Biodegradation)

  • 양수빈;유연진;김응수;최시선
    • 한국미생물·생명공학회지
    • /
    • 제50권4호
    • /
    • pp.501-507
    • /
    • 2022
  • 대표적인 플라스틱 소재인 PET (Polyethylene terephthalate)는 높은 내구성, 경제성과 같은 유용한 물리화학적 특성으로 병, 섬유, 용기 등 다양한 산업 분야에 사용되고 있다. 최근 일회용품을 비롯한 플라스틱 사용량 증가로 인해, 이를 처리하기 위한 방법이 필요한 상황이다. 기존의 매립, 소각 등과 같이 자연상태에 노출되는 방법과 달리 최근 미생물을 이용한 친환경적인 방법이 주목받고 있다. 본 연구에서는 PETase 유전자를 가지고 있는 토양 유래 방선균 Streptomyces. javensis Inha503를 선별하고, agar plate diffusion assay를 통해 PU (Polyurethane) 가수분해 능력을 확인하였다. 해당 균주를 PET과 함께 한달 간 배양하였고, 주사전자현미경을 통해 PET 분해능력을 확인하였다. 또한, S. javensis Inha503 유전체 탐색에서 선별된 PETase 유전자를 PET 분해능이 없는 이종숙주 S. lividans와 S. coelicolor 균주에 도입하여 PET 분해능을 확인함으로써, 방선균 유래 PETase 유전자의 활성을 최초로 확인하였다.