• Title/Summary/Keyword: PET / CT

Search Result 761, Processing Time 0.024 seconds

The Effect of Metallic Dental Implant on Positron Emission Tomography Computed Tomography Image (금속성 치아충전물이 PET/CT영상이 미치는 영향)

  • Kim, Ki-Jin;Bae, Seok-Hwan;Han, Sang-Hyun;Yu, Se-Jong;Lee, Bo-Woo
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.243-247
    • /
    • 2012
  • Beam hardening artifact happens in the CT image. when a PET/CT is conducted while there is a metallic dental implant. The artifact appears in the CT image can affect the PET image. When the patient with head and neck cancer has a metallic dental implant, Beam hardening artifact which was taken in th CT image can change the PET image and SUV value. Therefore, by Quantitative measure of the SUV according to the change in HU by the metallic dental implant, the appropriacy in the clinical application was assessed. The records of 47 patients with PET/CT August 2011. For the analysis, 2 region of interest were defined in area where CT and PET image. As a result of the experiment, if there in an implant, the HU and the SUV increased and there existed a statistically significant difference(p<0.01). Although this level of increase was not large compared with that in the patient who have no metallic dental implant, when a person has head and neck cancer, it is even more likely to be overestimated when diagnosing the cancer. When conducting PET/CT for the patient who have head and neck cancer, the physical biological parts should be considered in order not to make an error in decoding.

The Difference of Standardized Uptake Value on PET-CT According to Change of CT Parameters (PET-CT에서 CT의 관전압 및 관전류에 따른 SUV값의 변화)

  • Shin, Gyoo-Seul;Dong, Kyeong-Rae
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2007
  • Purpose : There is difference between PET and PET/CT method on their transmission image for attenuation correction. The CT image is used for attenuation correction on PET/CT and the parameters of CT may be affected on PET image. We performed the phantom study to evaluate whether the change of CT parameters(kilovolts peak and milliampere) affect standardized uptake value(SUV) on PET image. Material and Method: The data spectrum lung phantom containing diluted [18F]fluorodeoxyglucose ([18F]FDG) solution(1.909 mCi for phantom 1, $913\;{\mu}Ci$ for phantom 2) was used. The CT images of phantom were acquired with varying parameters (80, 100, 120, 140 for kVp, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for mA). The PET images were reconstructed with the each CT images and SUVs were compared. Result : The SUVs of phantom 1 reconstructed with each 80, 100, 120 and 140 kVp showed $12.26{\pm}0.009$, $12.27{\pm}0.005$, $12.27{\pm}0.006$ and $12.27{\pm}0.009$, respectively. The SUVs of phantom 2 revealed $4.52{\pm}0.043$, $4.53{\pm}0.004$, $4.52{\pm}0.007$ and $4.52{\pm}0.005$ with elevation of voltage. There was no statistically significant difference of SUVs between groups based on various kVp. Also SUVs of phantom 1 and 2 showed no significant change with elevation of milliampere in CT parameter. Conclusion : The parameters of CT did not significantly affect SUV on PET image in our study. Therefore we can apply various parameters of CT appropriated for clinical conditions without significant change of SUV on PET CT image.

  • PDF

False Positive of F-18 FDG-PET/CT due to Activated Charcoal Granuloma from Intraperitoneal Chemotherapy: A Case Report (복강 내 화학요법에 이용된 활성화 탄소 육아종에 의한 F-18 FDG PET/CT의 위양성 소견: 증례)

  • Lee, Se-Youl;Kim, Chan-Young;Yang, Doo-Hyun
    • Journal of Gastric Cancer
    • /
    • v.6 no.4
    • /
    • pp.291-294
    • /
    • 2006
  • F-18 FDG-PET/CT could be used to evaluate the surveillance of recurrent stomach cancer, but some cases reported as false-positives. The authors found an activated charcoal granuloma from intraperitoneal chemotherapy by using a curative resection and mitomycin C for stomach cancer. A mass behind the right colon that showed on CT 6 months after an operation in a 46-year-old male patient had no progression in size, but 36 months after the operation, an increase was seen on F-18 FDG-PET/CT, and a metastatic tumor was suspected. The tumor was resected by an explorative laparotomy and was diagnosed as being an activated charcoal granuloma based on the histologic finding. Based on this case, we should be reminded of the possibility of a false-positive on analysis of F-18 FDG-PET/CT caused by an activated charcoal granuloma in a patient who has intraperitoneal chemotherapy.

  • PDF

The Comparison Evaluation of SUV Using Different CT Devices in PET/CT Scans (PET 검사에서 CT 장비의 차이에 따른 PET/CT의 SUV 비교 평가)

  • Kim, Woo Hyun;Go, Hyeon Soo;Lee, Jeong Eun;Kim, Ho Sung;Ryu, Jae Kwang;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Purpose: Among different PET/CT devices which are composed of same PET model but different CT models, SUV, usually used for quantitative evaluation, was measured to assess the accuracy of follow up scans in different PET/CT and confirm that interequipment compatibility is useful in arranging the PET/CT exam appointment. Materials and Methods: Using ACR PET Phantom, PET NEMA IEC Body Phantom, SNM Chest Phantom and Ge-68 cylinder Phantom, $SUV_{mean}$ and $SUV_{max}$ was measured by 3 different models of PET/CT (Discovery 690, Discovery 690Elite and Discovery 710, GE) made in same company. ANOVA was used to evaluate the significant difference in the result. Results: In the result, the average of $SUV_{max}$ was D690 (25 mm-1.82, 16 mm-1.75, 12 mm-1.73, 8 mm-1.44), D690E (25 mm-1.76, 16 mm-1.92, 12 mm-1.78, 8 mm-1.55) and D710 (25 mm-1.84, 16 mm-1.89, 12 mm-1.77, 8 mm-1.61) in ACR Phantom, D690 (25 mm-2.26, 16 mm-2.25, 12 mm-1.92, 8 mm-1.85), D690E (25 mm-2.45, 16 mm-2.25, 12 mm-2.05 8 mm-1.91) and D710(25 mm-2.49, 16 mm-2.20, 1 2mm-2.30, 8 mm-2.05) in PET NEMA IEC Body Phantom, D690-1.04, D690E-1.10 and D710-1.09 in SNM Chest Phantom and D690-0.81, D690E-0.81, D710-0.84 in Ge-68 cylinder Phantom. The differences between average SUV of 4 phantoms were $SUV_{mean}$-1.87%, $SUV_{max}$-2.15%. And also as a result of ANOVA analysis, there was no significant difference statistically. Conclusion: If different models of PET/CT have same specification of PET system, there was no significant difference in $SUV_{mean}$ and $SUV_{max}$ even though they have different CT system. And also differences of $SUV_{mean}$ and $SUV_{max}$ in phantom images were under 5% which many manufacturers recommend. Therefore, follow up scan will be possible using different PET/CT if it has same specification of PET system with the previous PET/CT. This information will enable the accurate comparative analysis when conducting follow up scans and be helpful to schedule PET/CT exam more effectively.

  • PDF

Imaging of Gastric Cancer Metabolism Using 18 F-FDG PET/CT

  • Yun, Mijin
    • Journal of Gastric Cancer
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Aerobic glycolysis has been the most important hypothesis in cancer metabolism. It seems to be related to increased bioenergetic and biosynthetic needs in rapidly proliferating cancer cells. To this end, F-18 fluorodeoxyglucose (FDG), a glucose analog, became widely popular for the detection of malignancies combined with positron emission tomography/computed tomography (PET/CT). Although the potential roles of FDG PET/CT in primary tumor detection are not fully established, it seems to have a limited sensitivity in detecting early gastric cancer and mainly signet ring or non-solid types of advanced gastric cancer. In evaluating lymph node metastases, the location of lymph nodes and the degree of FDG uptake in primary tumors appear to be important factors affecting the diagnostic accuracy of PET/CT. In spite of the limited sensitivity, the high specificity of PET/CT for lymph node metastases may play an important role in changing the extent of lymphadenectomy or reducing futile laparotomies. For peritoneal metastases, PET/CT seems to have a poorer sensitivity but a better specificity than CT. The roles of PET/CT in the evaluation of other distant metastases are yet to be known. Studies including primary tumors with low FDG uptake or peritoneal recurrence seem suffer from poorer diagnostic performance for the detection of recurrent gastric cancer. There are only a few reports using FDG PET/CT to predict response to neoadjuvant or adjuvant chemotherapy. A complete metabolic response seems to be predictive of more favorable prognosis.

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.

Usefulness of 18F-FDG PET/CT and Multiphase CT in the Differential Diagnosis of Hepatocellular Carcinoma and Combined Hepatocellular Carcinoma-Cholangiocarcinoma (간세포암종과 혼합성 간세포암종-담관암종에서 다위상 전산단층촬영술 소견과 18F-FDG PET/CT에서 섭취율 차이에 대한 분석 )

  • Jae Chun Park; Jung Gu Park;Gyoo-Sik Jung;Hee Kang;Sungmin Jun
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1424-1435
    • /
    • 2020
  • Purpose The purpose of this study was to evaluate the usefulness of multiphasic CT and 18F-fluorodeoxyglucose (FDG) PET/CT for the differentiation of combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) from hepatocellular carcinoma (HCC). Materials and Methods From January 2007 to April 2016, 93 patients with pathologically confirmed HCC (n = 84) or cHCC-CCA (n = 9) underwent CT and PET/CT imaging. Contrast enhancement patterns were divided into three types based on the attenuation of the surrounding liver parenchyma: type I (early arterial enhancement with delayed washout), type II (early arterial enhancement without delayed washout), and type III (early hypovascular, infiltrative appearance, or peripheral rim enhancement). Results cHCC-CCAs (89%) had a higher PET/CT positive rate than did HCCs (61%), but the PET/CT positive rate did not differ significantly (p = 0.095). Among the 19 cases of the type II enhancement pattern, 3 (21%) of 14 HCCs and 4 (80%) of 5 cHCC-CCAs were PET/CT positive. cHCC-CCAs had a significantly higher PET/CT positive rate (p = 0.020) in the type II enhancement pattern. Conclusion The PET/CT positive rate of cHCC-CCA was significantly higher than that of HCC in lesions with a type II enhancement pattern. The 18F-FDG PET/CT can be useful for the differentiation of cHCC-CCA from HCC in lesions with a type II enhancement pattern on multiphasic CT.

Effect of the Dose Reduction Applied Low Dose for PET/CT According to CT Attenuation Correction Method (PET/CT 저선량 적용 시 CT 감쇠보정법에 따른 피폭선량 저감효과)

  • Jung, Seung Woo;Kim, Hong Kyun;Kwon, Jae Beom;Park, Sung Wook;Kim, Myeong Jun;Sin, Yeong Man;Kim, Yeong Heon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.127-133
    • /
    • 2014
  • Purpose: Low dose of PET/CT is important because of Patient's X-ray exposure. The aim of this study was to evaluate the effectiveness of low-dose PET/ CT image through the CTAC and QAC of patient study and phantom study. Materials and Methods: We used the discovery 710 PET/CT (GE). We used the NEMA IEC body phantom for evaluating the PET data corrected by ultra-low dose CT attenuation correction method and NU2-94 phantom for uniformity. After injection of 70.78 MBq and 22.2 MBq of 18 F-FDG were done to each of phantom, PET/CT scans were obtained. PET data were reconstructed by using of CTAC of which dose was for the diagnosis CT and Q. AC of which was only for attenuation correction. Quantitative analysis was performed by use of horizontal profile and vertical profile. Reference data which were corrected by CTAC were compared to PET data which was corrected by the ultra-low dose. The relative error was assessed. Patients with over weighted and normal weight also underwent a PET/CT scans according to low dose protocol and standard dose protocol. Relative error and signal to noise ratio of SUV were analyzed. Results: In the results of phantom test, phantom PET data were corrected by CTAC and Q.AC and they were compared each other. The relative error of Q.AC profile was been calculated, and it was shown in graph. In patient studies, PET data for overweight patient and normal weight patient were reconstructed by CTAC and Q.AC under routine dose and ultra-low dose. When routine dose was used, the relative error was small. When high dose was used, the result of overweight patient was effectively corrected by Q.AC. Conclusion: In phantom study, CTAC method with 80 kVp and 10 mA was resulted in bead hardening artifact. PET data corrected by ultra- low dose CTAC was not quantified, but those by the same dose were quantified properly. In patients' cases, PET data of over weighted patient could be quantified by Q.AC method. Its relative difference was not significant. Q.AC method was proper attenuation correction method when ultra-low dose was used. As a result, it is expected that Q.AC is a good method in order to reduce patient's exposure dose.

  • PDF

Detection of bone marrow involvement with FDG PET/CT in patients with newly diagnosed lymphoma

  • Ozpolat, H. Tahsin;Yilmaz, Ebru;Goksoy, Hasan Sami;Ozpolat, Sahre;Dogan, Oner;Unal, Seher Nilgun;Nalcaci, Meliha
    • BLOOD RESEARCH
    • /
    • v.53 no.4
    • /
    • pp.281-287
    • /
    • 2018
  • Background Bone marrow involvement (BMI) affects the lymphoma stage, survival, and treatment. Bone marrow biopsy (BMB) and fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) are useful techniques to detect BMI. Both have advantages and disadvantages. We aimed to identify factors that could be used to predict BMI with positive and negative results on PET/CT compare them with BMB in newly diagnosed patients with lymphoma. Methods We included 22 non-Hodgkin and 16 Hodgkin lymphoma patients in this single center study. All patients had PET/CT examination and BMB before treatment. BMI in BMB was reported as negative or positive. Bone marrow was classified into 3 types by FDG uptake on PT/CT; diffuse involvement, focal involvement, and normal bone marrow. Results PET/CT and BMB results were concordant (7 positive, 15 negative) in 22 patients (57%). We evaluated concordant and discordant patient characteristics and risk-stratified patients for BMI. Our findings suggest that patients with diffuse FDG uptake on PET/CT, especially patients with advanced age and low platelet and white blood cell counts, are likely to have BMI and could potentially forego BMB. Patients with negative PET/CT findings and no significant laboratory abnormalities are very unlikely to have BMI. Conclusion Our results suggest that BMI should not be decided solely based PET/CT or BMB findings. It is reasonable to use both diagnostic assays along with clinical and laboratory findings. PET/CT result, clinical and laboratory findings could be useful for predicting BMI in patient for whom BMB is contraindicated.

A Case of Primary Pulmonary Artery Sarcoma Mimicking Pulmonary Embolism: Role of PET/CT for Differential Diagnosis (PET/CT로 혈전증과 감별된 원발성 폐동맥 육종 1례)

  • Lim, Sang-Soo;Hong, Koo-Hyun;Shin, Jae-Min;Kim, Youn Seup;Jee, Young Koo;Myoung, Na Hye;Park, Seok Gun;Park, Jae Seuk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.3
    • /
    • pp.232-236
    • /
    • 2007
  • Primary pulmonary artery sarcoma is a rare malignant tumor arising from the pulmonary artery. Diagnosis of primary pulmonary artery sarcoma is quite difficult and the conditon is often misdiagnosed as a more common disease, such as a pulmonary embolism. PET can help in diagnosing a pulmonary artery sarcoma due to the increased uptake of $^{18}F-FDG$ in the area of the tumor. However, the poor anatomic resolution of PET has limited its clinical applications in pulmonary vascular disease. The recently developed PET/CT is the fusion of PET and CT that improves the anatomical resolution of PET. We report a case of a primary pulmonary artery sarcoma mimicking a pulmonary embolism that was diagnosed with PET/CT and confirmed with a surgical resection.