• 제목/요약/키워드: PET (poly(ethylene) terephthalate)

검색결과 190건 처리시간 0.037초

자외선 조사된 Poly(ethylene terephthalate) 필름의 표면 열화 분석 (Analysis of the Surface Degradation in UV-irradiated Poly(ethylene terephthalate) films)

  • 임경범;김종윤;최훈영
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2230-2234
    • /
    • 2010
  • This paper deals with the change of surface potential decay, surface resistivity, contact angle and XPS of ultraviolet-treated PET films. From the experimental results on the surface potential decay of UV degraded-samples, it was found that the accumulation of charge is decreased and the surface potential decay time is shortened. Also, from the result of XPS, it was found that the changes affected by the surface degradation of PET film were caused by the generation of carboxyl groups through the chain decomposition and recombination with oxygen molecules in the air.

Application of various types of recycled waste materials in concrete constructions

  • Hosseini, Seyed Azim
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.479-489
    • /
    • 2020
  • Studies have proved that the mechanical properties of concrete, suddenly is dropped off with employing waste materials as replacements. The effectiveness of fibre addition on the structural stability of concrete has been indicated in recent investigations. There are different waste aggregates and fibres as plastic, rubber tire, coconut, and other natural wastes, which have been evaluated throughout the last decades. The fibres incorporation has a substantial effect on the properties of concrete mix subjected to different loading scenarios. This paper has reviewed different types of wastes and the effect of typical fibres including Poly Ethylene Terephthalate (PET), rubber tire, and waste glass. Furthermore, waste plastic and waste rubber has been especially studied in this review. Although concretes containing PET fibre revealed a reduction in compressive strength at low fibre fractions, using PET is resulted to micro-cracking decrement and increasing flexibility and flexural strength. Finally, according to the reviews, the conventional waste fibres are well-suited to mitigated time-induced damages of concrete and waste fibres and aggregates could be a reliable replacement for concrete.

플라즈마 표면처리가 Poly(ethylene terephthalate) 필름의 전기적 및 기계적 성질에 미치는 영향 (Effect of Plasma Surface Treatment on Electrical and Mechanical Properties of Poly(ethylene terephthalate ) Film)

  • 임경범;이덕출
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.61-67
    • /
    • 2001
  • In this study the electrical and mechanical characteristics of PET films ore analyzed after plasma surface treatment. After plasma treatment, the surface potential decay, surface potential and dielectric property were evaluated to analyze the electrical insulating property, and the tensile strength was measured as the mechanical characteristic. When plasma treatment was conducted for less than 10 minutes, it was found that the electrical insulating property was improved through evaporation of low molecular weight materials md cleaning of surface. However, for more than 10 minutes, the insulating property of plasma treated PET films was decreased due to excessive discharge energy. The tensile strength was hardly changed by Plasma treatment.

  • PDF

Processing Characteristic and Liquid Crystalline Phase Behavior of PHB/PEN/PET Ternary Blend

  • Kang, Seong-Wook;Kim, Seong-Hun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.20-24
    • /
    • 1998
  • Poly(ethylene 2,6-naphthalate) (PEN) has been known since 1948, when its synthesis was first reported by ICI. Co. In spite of its long history. application of PEN is limited as compared with poly(ethylene terephthalate) (PET). because PEN monomer is very expensive, and PEN exhibits relatively high melt viscosity that is not easy for fiber spinning and injection molding.(omitted)

  • PDF

Sputter Etching한 Poly(ethylene terrephthalate)와 Nylon 6 Film의 표면특성 (Surface Characteristics of Sputter Etched Poly(ethylene terephthalate) and Nylon 6 Films)

  • Kang, Koo;Wakida, T.;Cho, In-Sul;Cho, Hwan
    • 한국염색가공학회지
    • /
    • 제3권2호
    • /
    • pp.25-33
    • /
    • 1991
  • Poly(ethylene terephthalate)(PET) and nylon 6 films stretched uniaxially and biaxially were sputter etched in the presence of argon gas. The surface of the etched films was investigated using a scanning electron microscope(SEM). While cracks perpendicular to the stretched direction were observed in the uniaxil stretched films sputter etched for 30 min., many protrusions were formed in the biaxial stretched films at the height of 0.3-0.4 gm for PET and $0.1-0.2\mum$ for nylon 6. The tops of two or three protrusions merged etching time increased to 60 min. The contact angle to water of the sputter etched PET and nylon 6 films decreased steeply when etched for one to 3 min. In order to investigate chemical changes on the surface ESCA analysis was carried out. In both films sputter etched $C_{1s}$ intensity decreased and $O_{1s}$ intensity increased compared with the unetched ones.

  • PDF

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

용융시간에 따른 PTT/PBN 블렌드물의 혼화성 변화 (Changes in the Miscibility of PTT/PBN Blends with Melting Time)

  • 최재원;김영호
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.83-86
    • /
    • 2003
  • 최근 들어 poly(trimethylene terephthalate)(PTT)를 다른 고분자와 블렌딩시켜 특성 변화를 검토한 논문이 많이 발표되고 있는데 PTT와 블렌딩하는 고분자는 주로 PET와 같은 Poly(alkylene terephthalate)계 고분자들이다[1,2]. 나프탈렌환을 갖는 Poly(alkylene naphthalate)계 고분자를 PTT와 블렌딩한 연구는 PTT/poly(ethylene naphthalate)(PEN) 블렌드계[3] 정도가 보고되고 있으며, PTT를 다른 나프탈렌계 고분자와 블렌딩한 연구 결과는 거의 없는 실정이다. (중략)

  • PDF

Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu;Deri Zhou;Weimin Chai;Lee, Byeongdu;Le, Seung-Woo;Jinhwan Yoon;Moonhor Ree
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.25-35
    • /
    • 2003
  • A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.

Effects of Blend Ratio and Heat Treatment on the Properties of the Electrospun Poly(ethylene terephthlate) Nonwovens

  • Kim Kwan Woo;Lee Keun Hyung;Lee Bong Seok;Ho Yo Seung;Oh Seung Jin;Kim Hak Yong
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2005
  • Semicrystalline poly(ethylene terephthalate) (cPET)/amorphous poly(ethylene terephthalate) with isophthalic acid (aPET) blends with 100/0, 75/25, 50/50, 25/75, and 0/100 by weight ratios were dissolved in a mixture of trifluoroacetic acid (TFA)/methylene chloride (MC) (50/50, v/v) and electrospun via the electrospinning technique. Solution properties such as solution viscosity, surface tension and electric conductivity were determined. The solution viscosity slightly decreased as aPET content increased, while there was no difference in surface tension with respect to aPET composition. The characteristics of the electro spun cPET/aPET blend nonwovens were investigated in terms of their morphology, pore size and gas permeability. All these measurements were carried out before and after heat treatment for various blend weight ratios. The average diameter of the fibers decreased with increasing aPET composition due to the decrease in viscosity. Also, the morphology of the electrospun cPET/aPET blend nonwovens was changed by heat treatment. The pore size and pore size distribution varied greatly from a few nanometers to a few microns. The gas permeability after heat treatment was lower than that before heat treatment because of the change of the morphology.