• Title/Summary/Keyword: PEST분석

Search Result 226, Processing Time 0.025 seconds

Analysis of the Effect of Temperature on the Pesticide Efficacy and Simulation of the Change in the Amount of Pesticide Use (온도가 농약효과에 미치는 영향분석 및 농약사용량 예측 모의실험)

  • Mo, Hyoung-ho;Kang, Ju Wan;Cho, Kijong;Bae, Yeon Jae;Lee, Mi-Gyung;Park, Jung-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.1
    • /
    • pp.56-62
    • /
    • 2016
  • Pest population density models are very important to monitor the initial occurrence and to understand the continuous fluctuation pattern of pest in pest management. This is one of the major issues in agriculture because these predictions make pesticides more effective and environmental impact of pesticides less. In this study, we combined and predicted the mortality change of pest caused by pesticides with temperature change and population dynamic model. Sensitive strain of two-spotted spider mite (Tetranychus urticae Koch) with kidney bean leaf as host was exposed to mixed acaricide, Acrinathrin-Spiromesifen and organotin acaricide, Azocyclotin, at 20, 25, 30, and $35^{\circ}C$, respectively. There was significant difference in mortality of T. urticae among pesticides and temperatures. We used DYMEX to simulate population density of T. urticae and predicted that the initial management time and number of chemical control would be changed in the future with climate change. There would be implications for strategies for pest management and selection process of pesticide in the future corresponding climate change.

A Study on Integrated Platform for Prevention of Disease and Insect-Pest of Fruit Tree (특용과수의 병해충 및 기상재해 방지를 위한 통합관리 플랫폼 설계에 대한 연구)

  • Kim, Hong Geun;Lee, Myeong Bae;Kim, Yu Bin;Cho, Yong Yun;Park, Jang Woo;Shin, Chang Sun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.347-352
    • /
    • 2016
  • Recently, IoT technology has been applied in various field. In particular, the technology focuses on analysing large amount of data that has been gathered from the environmental sensors, to provide valuable information. This technique has been actively researched in the agro-industrial sector. Many researches are underway in the monitoring and control for growth crop environment in agro-industrial. Normally, the average weather data is provided by the manual agro-control method but the value may differ due to the different region's weather and environment that may cause problem in the disease and insect-pest prevention. In order to develop a suitable integrated system for fruit tree, all the necessary information is obtained from the Jeollanam-do province, which has the high production rate in the Korea. In this paper, we propose an integrated support platform for the growing crops, to minimize the damage caused due to the weather disaster through image analysis, forecasting models, by using the micro-climate weather information collection and CCTV. The fruit tree damage caused by the weather disaster are controlled by utilizing various IoT technology by maintaining the growth environment, which helps in the disease and insect-pest prevention and also helps farmers to improve the expected production.

Accuracy Improvement of Urban Runoff Model Linked with Optimal Simulation (최적모의기법과 연계한 도시유출모형의 정확도 개선)

  • Ha, Chang-Young;Kim, Byunghyun;Son, Ah-Long;Han, Kun-Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • The purpose of this study is to improve the accuracy of the urban runoff and drainage network analysis by using the observed water level in the drainage network. To do this, sensitivity analysis for major parameters of SWMM (Storm Water Management Model) was performed and parameters were calibrated. The sensitivity of the parameters was the order of the roughness of the conduit, the roughness of the impervious area, the width of the watershed, and the roughness of the pervious area. Six types of scenarios were set up according to the number and types of parameter considering four parameters with high sensitivity. These scenarios were applied to the Seocho-3/4/5, Yeoksam, and Nonhyun drainage basins, where the serious flood damage occurred due to the heavy rain on 21 July, 2013. Parameter optimization analysis based on PEST (Parameter ESTimation) model for each scenario was performed by comparing observed water level in the conduits. By analyzing the accuracy of each scenario, more improved simulation results could be obtained, that is, the maximum RMSE (Root Mean Square Error) could be reduced by 2.41cm and the maximum peak error by 13.7%. The results of this study will be helpful to analyze volume of the manhole surcharge and forecast the inundation area more accurately.

A Delphi study on how to vitalize the blockchain-based NFT

  • Sang-yub Han;Ho-kyoung Ryu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.77-87
    • /
    • 2024
  • In this paper, we propose a study applying the Delphi technique to domestic blockchain experts to determine urgent and pivotal conditions for NFT proliferation. We examine these conditions from a PEST (Political, Economic, Social, and Technological Analysis of the Macro Environment) perspective, as well as the functions of digital assets (measurement, storage, and exchange). Through two rounds of expert surveys on the seven NFT perspectives, we identify 6 activating factors that can help guide future policy-making for the NFT market. These factors have broad implications for the development of new industries using blockchain technology and tokens. The Delphi method employed in this study is a group discussion technique that gathers opinions from experts anonymously through two rounds and to address drawbacks related to expert selection bias and opinion alignment, additional opinion collection and review of projections were conducted in each round.

Adhesion Amount of Acetamipride on Plant and the Pest Control Effect According to the Reduced Application Amount (살포량 감소에 의한 살충제 Acetamipride의 작물 부착량과 나방류 방제효과)

  • Kim, Young-Shin;Jang, Ji-Woong;Jin, Na-Young;Yu, Yong-Man;Youn, Young-Nam;Lim, Chi-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.317-322
    • /
    • 2015
  • This study was conducted to obtain basic data for deriving the appropriate application amount of insecticide for effective pest control. We have investigated the correlation among the application amount of insecticide, the adhesion amount of active ingredient and the pest control effect. The linear standard curve of acetamiprid was $R^2=0.9994$, and the scope of the recovery factor was between 71% and 93% with less than 6% of the coefficient of variation. During the test conducted in 2015, the application amount was reduced to 302 L/10a which was 70 L less than the previous year and the spraying pressure was reduced as well. After analyzing the adhesion amount of active ingredient, it was found that a correlation coefficient of adhesion amount of the active ingredients became lower from 82% to 69%, that indicated insecticide liquid was evenly distributed compared to 2014. Also more than 95% of control effect was displayed, thereby indicating that there is a close relation with the correlation coefficient of the adhesion amount of active ingredient. It also presented that the adhesion amount of active ingredient on the ground was 2.2 times more than that on the leaves of apple trees.

The Study on Evaluation Method of Pest Control Robot Requirements for Smart Greenhouse (스마트 온실 방제 로봇의 요구조건을 고려한 평가 방법 연구)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng;Lee, Siyoung;Kim, Gookhwan;Lee, Meonghun;Hong, Young-ki;Kim, Hyunjong;Yu, Byeong-Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.318-325
    • /
    • 2019
  • Recently, research and development on agricultural robots have been on the rise as the interest in smart farming has increased. Robots used in smart greenhouses should be taken into account with the working characteristics and growing environment. This study examined cleaning robots developed through the environmental analysis of smart greenhouses. This study assessed the evaluation method considering the requirements of the pest control robot applicable to the smart greenhouse. The performance and quality assessment criteria were established to conduct tests through the requirements of robots. The required functions and goals of the pest control robot were derived by referring to the robot-related standards. A driving and working ability test was conducted to assess the performance of the robot. The driving test was conducted on the driving performance of the robot and the work capability was tested on the pest control performance. In addition, a durability test was conducted to assess the quality of the robot. The required factors for smart greenhouse robots were derived from the test results. The study results are expected be a standard for an evaluation of a variety of robots for applications to smart greenhouses.

Ecosystem Vulnerability Assessment of Local Government Due to Climate Change (기후변화에 따른 지자체의 생태계 취약성 평가)

  • Kong, Woo-seok;Lee, Slegee;Park, Heena;Yu, Jeong Ah
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2012
  • This work aims to propose a vulnerability assessment methodology of ecosystem at present time, and an to suggest an adaptation strategy of ecosystem in the future for local government, in the fields of plant, animal and conservation area, which would occurred due to climate change. Vulnerability assessment in ecosystem includes first, tree growth and distribution part, mainly for conifers, secondly, insect part for pest and bee, and thirdly conservation area management part, especially at the national parks. To evaluate the degree of vulnerability of each substitute variables, such as exposure of climatic element, sensitivity, and adaptation ability, are respectively selected. Vulnerabilities of conifer growth and distribution, pest and bee, and national park management seem to be strongly influenced by the exposure of climatic element than other factors, such as sensitivity and adaptation ability. With time regional gaps of ecosystem vulnerability are expected to be greater in both conifers growth and distribution, and national park management, but reduced in pest and bee in 2100 in comparison with present time.

Environmental Factors Influencing on the Occurrence of Pine Wilt Disease in Korea (우리나라에서 소나무재선충병 초기 발생지의 환경 특성 분석)

  • Lee, Dae-Seong;Nam, Youngwoo;Choi, Won Il;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.374-380
    • /
    • 2017
  • Pine wilt disease (PWD) is one of the hazardous pine tree diseases in whole world. In Korea, PWD has been spreading since it was first observed in Busan in 1988. Dispersion of PWD is mainly mediated by its vectors such as Japanese pine sawyer. In this study, we characterized environmental condition including meteorological factors, geographical factors, and land use factors influencing on the occurrence of PWD. The occurrence data of PWD were collected at 153 sites where were the initial occurrence sites of PWD in local government regions such as city, Gun, or Gu scale. We used Akaike Information Criterion (AIC) to evaluate the relative importance of environmental variables on the discrimination of occurrence or absence of PWD. The results showed that altitude, slope, and distance to road were the most influential factors on the occurrence of PWD, followed by distance to building. Finally, our study presented that human activities highly influenced on the long term dispersal of PWD.