• Title/Summary/Keyword: PEP-1-CAT

Search Result 6, Processing Time 0.018 seconds

Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage

  • Kim, Dae-Won;Kim, Duk-Soo;Kim, Mi-Jin;Kwon, Soon-Won;Ahn, Eun-Hee;Jeong, Hoon-Jae;Sohn, Eun-Jeong;Dutta, Suman;Lim, Soon-Sung;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.647-652
    • /
    • 2011
  • The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1-CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by $H_2O_2$. Additionally, the group of PEP-1-CAT + imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT + imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.

Kinetic Properties of Wild-type and C117D Mutant UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae

  • Han, Seong-Gu;Jin, Bong-Suk;Lee, Won-Kyu;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2549-2552
    • /
    • 2011
  • In this study, the kinetic properties of wild-type and C117D mutant H. influenzae MurA (Hi MurA), which catalyzes the first reaction in the biosynthetic pathway of the cell wall, were characterized. Purified recombinant Hi MurA was active at pH values ranging from pH 5.5 to pH 10, and its $K_m$ (UNAG), $K_m$ (PEP), and $k_{cat}$ values were measured to be 31 ${\mu}M$, 24 ${\mu}M$, and 210 $min^{-1}$, respectively. Hi MurA activity was effectively inhibited by fosfomycin with an $IC_{50}$ value of 60 ${\mu}M$. Hi MurA contains a cysteine residue (C117) at the loop region near the PEP binding, whereas MurA from fosfomycin resistant Mycobaterium tuberculosis or Chlamydia trachomatis contain an aspartate residue instead of the cysteine at the corresponding site. Aspartate substitution of Cys117 in Hi MurA shifted its optimum pH from 7.8 to 6.0. In addition, the $K_m$ values for UNAG and PEP were increased to 160 ${\mu}M$ and 150 ${\mu}M$, respectively, and the $k_{cat}$ value was significantly reduced to 41 $min^{-1}$. Furthermore, the C117D mutant form of Hi MurA was not inhibited by 1 mM fosfomycin. These results indicate that the Cys117 of Hi MurA is the binding site of fosfomycin and plays an important role in the fast turnover of the catalytic reaction.

BIOCHEMICAL POLYMORPHISM STUDIES IN BREEDS OF WOOL-SHEEP, HAIR-SHEEP AND THEIR HYBRIDS IN MALAYSIA

  • Lee, S.L.;Mukherjee, T.K.;Agamuthu, P.;Panandam, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.4
    • /
    • pp.357-364
    • /
    • 1995
  • A biochemical genetic study on blood enzyme/protein systems in some breeds/crosses of sheep in Malaysia was carried out using horizontal starch gel electrophoresis. Blood samples were collected from 435 sheep, representing 8 breeds/crosses. These included 5 wool sheep breeds (Thai Longtail, wiltshire, Suffolk, Dorsimal and cMBLx), 1 hair sheep breed (Barbados Blackbelly) and 2 hybrids between wool sheep and hair sheep (Cameroon ${\times}$ Thai Longtail and Bali Bali ${\times}$ Malin). Twenty loci systems were examined. Of these, ten ($HB{\beta}$, ALB, TF, XP, CAT, DIA1, EsA, GPI, ME and NP) exhibited genetic variation whereas the other ten (AAT, CA, DIA2, ${\alpha}GLO$, ${\alpha}GLU$, LDH, MDH, PEP[leu-gly-gly], 6PGD and SOD) were monomorphic. The allelic frequencies which were obtained in 10 polymorphic markers are assessed and compared with the results obtained by previous workers. The estimations of inbreeding coefficient, intrabreed variation and breed relationships have been critically discussed and are used to reveal some important recommendations.

Purification and Properties of Glucose 6-Phosphate Dehydrogenase from Aspergillus aculeatus

  • Ibraheem, Omodele;Adewale, Isaac Olusanjo;Afolayan, Adeyinka
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.584-590
    • /
    • 2005
  • Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of $220\;units\;mg^{-1}$/, a molecular weight of $105,000{\pm}5,000$ Dal by gel filtration and subunit size of $52,000{\pm}1,100$ Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had $K_m$ values of $6\;{\mu}m$ and $75\;{\mu}m$ for NADP and G6P respectively. The $k_{cat}$ was $83\;s^{-1}$. Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with $K_i$ values of $6.6\;{\mu}m$ and $4.7\;{\mu}m$ respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.

Effects of fermented soybean meal with Bacillus velezensis, Lactobacillus spp. or their combination on broiler performance, gut antioxidant activity and microflora

  • Tsai, C.F.;Lin, L.J.;Wang, C.H.;Tsai, C.S.;Chang, S.C.;Lee, T.T.
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1892-1903
    • /
    • 2022
  • Objective: A series of experiment were conducted to evaluate the effects of replacing a part of soybean meal (SBM) at 6% of broiler diets with fermented soybean meal (FSBM) obtained by single or two-stage fermentation by measuring growth performance, antioxidant activity in the jejunum and distal intestinal microflora. Methods: Soybean meal samples were prepared by single-stage fermentation using Bacillus velezensis (Bv) (FSBMB), or Lactobacillus spp. (as commercial control) (FSBML). Additional SBM sample was prepared by two-stage fermentation using Bv and subsequently using Lactobacillus brevis ATCC 367 (Lb) (FSBMB+L). Enzyme activity, chemical composition, trichloroethanoic acid-nitrogen solubility index (TCA-NSI) and antioxidant activity were measured. Then, in an in vivo study, 320 Ross308 broilers were divided into four groups with ad libitum supply of feed and water. Four groups were fed either a corn-soybean meal diet (SBM), or one of fermented SBM diets (FSBMB+L, FSBMB, and FSBML). Growth, serum characteristics, microflora, and the mRNA expression of selected genes were measured. Results: Compared to SBM, FSBMB+L contained lower galacto-oligosaccharide, allergic protein, and trypsin inhibitor, and higher TCA-NSI by about three times (p<0.05). Reducing power and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging ability correlated positively with the TCA-NSI content in FSBM. Growth performances were not significantly different among four groups. In jejunum of 35-day-old broilers, partial replacement of SBM by FSBMB+L increased the activity of superoxide dismutase and catalase (CAT), and the FSBMB group had the highest catalase activity (p<0.05). Partial replacement of SBM by FSBM increased relative mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and peptide transporter 1 (PepT1) (p<0.05); however, FSBMB+L increased CAT mRNA level to 5 times of the control (p<0.05). Conclusion: Using Bv- and Lb-processed SBM through two-stage fermentation to partially replace 6% of diets will improve the gut's antioxidant activity under commercial breeding in broilers.

Characterization of a Novel Thermostable Oligopeptidase from Geobacillus thermoleovorans DSM 15325

  • Jasilionis, Andrius;Kuisiene, Nomeda
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1070-1083
    • /
    • 2015
  • A gene (GT-SM3B) encoding a thermostable secreted oligoendopeptidase (GT-SM3B) was cloned from the thermophile Geobacillus thermoleovorans DSM 15325. GT-SM3B is 1,857 bp in length and encodes a single-domain protein of 618 amino acids with a 23-residue signal peptide having a calculated mass of 67.7 kDa after signal cleavage. The deduced amino acid sequence of GT-SM3B contains a conservative zinc metallopeptidase motif (His400-Glu401-X-XHis404). The described oligopeptidase belongs to the M3B subfamily of metallopeptidases and displays the highest amino acid sequence identity (40.3%) to the oligopeptidase PepFBa from mesophilic Bacillus amyloliquefaciens 23-7A among the characterized oligopeptidases. Secretory production of GT-SM3B was used, exploiting successful oligopeptidase signal peptide recognition by Escherichia coli BL21 (DE3). The recombinant enzyme was purified from the culture fluid. Homodimerization of GT-SM3B was determined by SDS-PAGE. Both the homodimer and monomer were catalytically active within a pH range of 5.0–8.0, at pH 7.3 and 40℃, showing the Km, Vmax, and kcat values for carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH peptidolysis to be 2.17 ± 0.04 × 10-6 M, 2.65 ± 0.03 × 10-3 µM/min, and 5.99 ± 0.07 s-1, respectively. Peptidase remained stable at a broad pH range of 5.0–8.0. GT-SM3B was thermoactive, demonstrating 84% and 64% of maximum activity at 50℃ and 60℃, respectively. The recombinant oligopeptidase is one of the most thermostable M3B peptidase, retaining 71% residual activity after incubation at 60℃ for 1 h. GT-SM3B was shown to hydrolyze a collagenous peptide mixture derived from various types of collagen, but less preferentially than synthetic hexapeptide. This study is the first report on an extracellular thermostable metallo-oligopeptidase.