• Title/Summary/Keyword: PEEP

Search Result 50, Processing Time 0.038 seconds

Effect of Ketanserin and Positive End Expiratory Pressure Ventilation on Hemodynamics and Gas Exchange in Experimental Acute Pulmonary Embolism (실험적 급성 폐동맥색전증에서 Ketanserin과 Positive End Expiratory Pressure Ventilation이 혈류역학 및 환기에 미치는 영향)

  • Lee, Sang-Do;Lee, Young-Hyun;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.135-146
    • /
    • 1993
  • Background: In acute pulmonary embolism it has been postulated that the constriction of bronchi and pulmonary artery secondary to neurohumoral response plays an important role in cardiopulmonary dysfunction in addition to the mechanical obstruction of pulmonary artery. Serotonin is considered as the most important mediator. Positive end expiratory pressure (PEEP) stimulates $PGI_2$ secretion from the vascular endothelium, but its role in acute pulmonary embolism is still in controversy. Methods: To study the cardiopulmonary effect and therapeutic role of Ketanserin, selective antagonist of 5-HT2 receptor, and PEEP in acute pulmonary embolism experimental acute pulmonary embolism was induced in dogs with autologous blood clot. The experimental animals were divided into 3 groups, that is control group, Ketanserin injection group and PEEP application group. Results: Thirty minutes after embolization, mean pulmonary arterial pressure and pulmonary vascular resistance increased and cardiac output decreased. $PaO_2,\;P\bar{v}O_2$ and oxygen transport decreased and physiological shunt and $PaCO_2$ increased. After injection of Ketanserin, comparing with control group, mean pulmonary arterial pressure, pulmonary vascular resistance and physiological shunt decreased, while cardiac output, $PaO_2$ and oxygen transport increased. All these changes sustained till 4 hours after embolization. After PEEP application pulmonary vascular resistance, $PaO_2$ and $PaCO_2$ increased, while physiological shunt, cardiac output and oxygen transport decreased. After discontinuation of PEEP, mean pulmonary arterial pressure and pulmonary vascular resistance decreased and were lower than control group, while $PaO_2$ and cardiac output increased and higher than control group. $PaCO_2$ decreased but showed no significant difference comparing with control group. Conclusion: It can be concluded that Ketanserin is effective for the treatment of acute pulmonary embolism. With PEEP hemodynamic status deteriorated, but improved better than control group after discontinuation of PEEP. Thus PEEP may be applied carefully for short period in acute pulmonary embolism if the hemodynamic status is tolerable.

  • PDF

A Study on the Pulmonary Hemodynamic Changes before and after PEEP in ARDS (호흡부전증에세 호기말 양압호흡법 치료 전후의 폐혈류역학적 변화에 관한 연구)

  • Chung, June-Key;Shin, Seong-Hae;Khang, Shin-Kwang;Park, Sung-Ki;Lee, Myung-Chul;Cho, Bo-Youn;Koh, Chang-Soon;Kim, Yong-Lack;Kim, Kwang-Woo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 1984
  • The purpose of this study is to observe the changes of pulmonary capillary permeability and various hemodynamic parameters before and after Positive End-Expiratory Pressure(PEEP) in Adult Respiratory Distress Syndrome (ARDS). Using a canine oleic acid induced ARDS model, we measured the pulmonary capillary permeability with a slope of lung: heart radioactivity ratio, hemodynamic parameters with Swan-Ganz catheter and blood gas tensions. 1) In normal and ARDS dogs, the PEEP didn't significantly influence the slope of lung: heart radioactivity ratio. But in ARDS group the slope index was increased compaired with that of control group (p<0.05). 2) Also in ARDS group, $PaO_2$ was significantly decreased, and $PaCO_2,\;PvCO_2$, MPAP, $AaDO_2$, Qs/Qt were significantly increased compared with those of control group (p<0.05). 3) In normal dogs, the PEEP didn't influence blood pH or gas tension, $AaDO_2$, Qs/Qt, or hemodynamics. 4) In ARDS dogs, however, the PEEP significantly increased $PaO_2$ and decreased $AaDO_2$, Qs/Qt (p<0.05).

  • PDF

The Changes of Respiratory Mechanics by a Bronchodilator Inhalation Under the Variable Level of PEEP in Patients with Acute Respiratory Distress Syndrome (급성호흡곤란증후군에서 기도확장제 투여 전후에 호기말양압 수준의 변화가 호흡역학에 미치는 영향)

  • Hong, Sang-Bum;Koh, Youn-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.3
    • /
    • pp.251-259
    • /
    • 2002
  • Background : Reduced lung compliance and increased lung resistance are the primary lung mechanical abnormalities in acute respiratory distress syndrome (ARDS). Although there is little information regarding the mechanisms responsible for the increases in the respiratory resistance of ARDS, bronchodilators have been frequently administered in mechanically ventilated ARDS patients. To determine the effect of a bronchodilator on the respiratory mechanics depending on the level of applied positive end-expiratory pressure (PEEP), the changes in the respiratory mechanics by salbutamol inhalation was measured under the variable PEEP level in patients with ARDS. Materials and Methods : Fifteen mechanically ventilated paralyzed ARDS patients (14 of male, mean age 57 years) were enrolled in this study. The respiratory system compliance, and the maximum and minimum inspiratory resistance were obtained by the end-inspiratory occlusion method during constant flow inflation using the CP-100 pulmonary monitor (Bicore, Irvine, CA, USA). The measurements were performed at randomly applied 8, 10 and 12 cm $H_2O$ PEEP before and 30 mins after administrating salbutamol using a meter-dose-inhaler (100ug${\times}$6). Results : 1) The maximum inspiratory resistance of the lung was higher than the reported normal values due to an increase in the minimal inspiratory resistance & additional resistance. 2) The maximum inspiratory resistance and peak airway pressure were significantly higher at 12cm $H_2O$ of PEEP compared with those at 10cm $H_2O$ of PEEP. 3) Salbutamol induced a significant decrease in the maximum and the minimum inspiratory resistance but no significant change in the additional resistance only was observed at 12cm $H_2O$ of PEEP(from $15.66{\pm}1.99$ to $13.54{\pm}2.41$, from $10.24{\pm}2.98$ to $8.04{\pm}2.34$, and from $5.42{\pm}3.41$ to $5.50{\pm}3.58cm$ $H_2O$/L/sec, respectively). 4)The lung compliance did not change at the applied PEEP and salbutamol inhalation levels. Conclusion : The bronchodilator response would be different depending on the level of applied PEEP despite the increased respiratory resistance in patients with ARDS.

Physiologic Changes During Bronchoscopy in Mechanically Ventilated Patients (기계환기중인 환자에서 기관지내시경 검사에 따른 생리적 변화)

  • Pyun, Yu Jang;Suh, Gee Young;Koh, Won-Jung;Yu, Chang-Min;Jeon, Kyeongman;Jeon, Ik Soo;Ham, Hyoung Suk;Kang, Eun Hae;Chung, Man Pyo;Kim, Hojoong;Kown, O Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.523-531
    • /
    • 2004
  • Background : Bronchoscopy in patients on mechanical ventilation is being performed much more frequently. However, there is little data on the changes in physiologic parameters and no established mechanical ventilation protocol during bronchoscopy. A decreasing or the removal of positive end-expiratory pressure (PEEP) during bronchoscopy may precipitate severe hypoxemia and/or derecruitment. Methods : Our standardized mechanical ventilation protocol, without changing the PEEP level, was used during bronchoscopy. The physiological parameters were measured during the bronchoscopic procedure. Results : During bronchoscopy, respiratory acidosis, elevation of peak pressure, elevation of heart rate and auto-PEEP were developed, but were reversible changes. Procedure-related gross barotraumas or other severe complications did not developed. Conclusion : No serious complications developed during bronchoscopy under our standardized mechanical ventilation protocol when the PEEP level remained unchanged. The procedure time should be kept to a minimum to decrease the exposure time to undesirable physiological changes.

The Effect of Positive end Expiratory pressure on the Pulmonary Capillary Pressure in Acute Lung Injury Patients (급성폐손상환자에서 호기말양압의 변화가 폐모세혈관압에 미치는 영향)

  • Chung, Byung-Chun;Byun, Chang-Gyoo;Lee, Chang-Youl;Kim, Hyung-Jung;An, Chul-Min;Kim, Sung-Kyu;Shin, Cheung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.5
    • /
    • pp.594-600
    • /
    • 2000
  • Background : Positive end expiratory pressure (PEEP) ventilation is well established as an integral part of the management of patients with the acute lung injury. PEEP is a key element in the treatment of hypoxemia resulting from pulmonary edema. Pulmonary capillary pressure (Pcap) is the most important factor influencing lung edema formation, and an understanding of how Pcap is altered by variations of PEEP or pulmonary arterial occlusion pressure (PAOP) is important to improve the treatment of acute lung injury patients. This study was performed to evaluate the effects of PEEP on the pulmonary capillary pressure in acute lung injury patients. Methods : This was a prospective study of 11 acute lung injury patients. The effect of PEEP on pulmonary circulation at four different levels (0,4,8, and 12cm$H_2O$) was analyzed. Pcap was estimated visually at bed side with Swan Ganz catheters. The pulmonary vasculature was analyzed by calculating the pressure difference at the arterial and venous parts of the circulation. Results: As PEEP increased from 0 to 12 cm$H_2O$, the mean pulmonary arterial pressure (PAP) and Pcap increased respectively from $22.7{\pm}7.4$ to $25.3{\pm}7.3$ mmHg and $15.3{\pm}3.3$ to $17.8{\pm}3.2$ mmHg (p<0.05). Similarly, PAOP increased from $9.8{\pm}2.1$ to $12.8{\pm}2.1$ mmHg and the central venous pressure increased from $6.1{\pm}1.6$ to $9.3{\pm}2.3$ mmHg(p<0.05). However, the pressure gradient at the arterial (PAP-Pcap) and venous (Pcap-Pcwp) parts of pulmonary circulation remained unchanged at all evaluated PEEP levels. Conclusion : Although Pcap increased gradually with increased the pressure gradient at the arterial and venous part of the pulmonary vasculature remained unchanged at all evaluated PEEP levels in acute lung injury patients.

  • PDF

Evaluation of Parameters of Gas Exchange During Partial Liquid Ventilation in Normal Rabbit Lung (토끼의 정상 폐 모델에서 부분액체환기 시 가스교환에 영향을 주는 인자들에 대한 연구)

  • An, Chang-Hyeok;Koh, Young-Min;Park, Chong-Wung;Suh, Gee-Young;Koh, Won-Jung;Lim, Sung-Yong;Kim, Cheol-Hong;Ahn, Young-Mee;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.1
    • /
    • pp.14-23
    • /
    • 2002
  • Background: The opitmal ventilator setting during partial liquid ventilation(PLV) is controversial. This study investigated the effects of various gas exchange parameters during PLV in normal rabbit lungs in order to aid in the development of an optimal ventilator setting during PLV. Methods: Seven New-Zealand white rabbits were ventilated in pressure-controlled mode with the following settings; tidal volume($V_T$) 8 mL/kg, positive end-expiratory pressure(PEEP) 4 $cmH_2O$, inspiratory-to-expiratory ratio(I:E ratio) 1:2, fraction of inspired oxygen($F_TO_2$) 1.0. The respiration rate(RR) was adjusted to keep $PaCO_2$ between 35~45 mmHg. The ventilator settings were changed every 30 min in the following sequence : (1) Baseline, as the basal ventilator setting, (2) Inverse ratio, I:E ratio 2:1, (3) high PEEP, adjust PEEP to achieve the same mean inspiratory pressure (MIP) as in the inverse ratio, (4) High $V_T$, $V_T$ 15 mL/kg, (5) high RR, the same minute ventilation (MV) as in the High $V_T$. Subsequently, the same protocol was repeated after instilling 18 mL/kg of perfluorodecalin for PLV. The parameters of gas exchange, lung mechanics, and hemodynamics were examined. Results: (1) The gas ventilation(GV) group showed no significant changes in the $PaO_2$ at all phases. The $PaCO_2$ was lower and the pH was higher at the high $V_T$ and high RR phases(p<0.05). No significant changes in the lung mechanics and hemodynamics parameters were observed. (2) The baseline $PaO_2$ for the PLV was $312{\pm}$ mmHg. This was significantly lower when decreased compared to the baseline $PaO_2$ for GV which was $504{\pm}81$ mmHg(p=0.001). During PLV, the $PaO_2$, was significantly higher at the high PEEP($452{\pm}38$ mmHg) and high $V_T$ ($461{\pm}53$ mmHg) phases compared with the baseline phase. However, it did not change significantly during the inverse I:E ratio or the high RR phases. (3) The $PaCO_2$ was significantly lower at high $V_T$ and RR phases for both the GV and PLV. During the PLV, $PaCO_2$ were significantly higher compared to the GV (p<0.05). (4) There were no important or significant changes in of baseline and high RR phases lung mechanics and hemodynamics parameters during the PLV. Conclusion: During PLV in the normal lung, adequate $V_T$ and PEEP are important for optimal oxygenation.

Mechanical Ventilation of the Children (소아의 기계적 환기요법)

  • Park, June Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.12
    • /
    • pp.1310-1316
    • /
    • 2005
  • Mechanical ventilation in children has some differences compared to in neonates or in adults. The indication of mechanical ventilation can be classified into two groups, hypercapnic respiratory failure and hypoxemic respiratory failure. The strategies of mechanical ventilation should be different in these two groups. In hypercapnic respiratory failure, volume target ventilation with constant flow is favorable and pressure target ventilation with constant pressure is preferred in hypoxemic respiratory failure. For oxygenation, fraction of inspired oxygen($FiO_2$) and mean airway pressure(MAP) can be adjusted. MAP is more important than FiO2. Positive end expiratory pressure(PEEP) is the most potent determinant of MAP. The optimal relationship of $FiO_2$ and PEEP is PEEP≒$FiO_2{\times}20$. For ventilation, minute volume of ventilation(MV) product of tidal volume(TV) and ventilation frequency is the most important factor. TV has an maximum value up to 15 mL/kg to avoid the volutrauma, so ventilation frequency is more important. The time constant(TC) in children is usually 0.15-0.2. Adequate inspiratory time is 3TC, and expiratory time should be more than 5TC. In some severe respiratory failure, to get 8TC for one cycle is impossible because of higher frequency. In such case, permissive hypercapnia can be considered. The strategy of mechanical ventilation should be adjusted gradually even in the same patient according to the status of the patient. Mechanical ventilators and ventilation modes are progressing with advances in engineering. But the most important thing in mechanical ventilation is profound understanding about the basic pulmonary mechanics and classic ventilation modes.

Assessment of Computed Tomographic Lung Density in Beagle and Shihtzu Dogs : Influence of Position and Positive End Expiratory Pressure (비글과 시츄견에서 호기말 양압에 따른 전산화 단층촬영상의 폐밀도의 평가)

  • Kim, Tae-Hun;Chang, Jin-Hwa;Yun, Seok-Ju;Yoon, Jung-Hee;Chang, Dong-Woo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2010
  • The objective of this study was to measure densities in various areas of the normal canine lung with computed tomography (CT) depending on influences of gravity and the degree of lung inflation and to determine optimal positions and positive end expiratory pressure of canine lung for CT scanning. In each eight normal Beagle and Shihtzu dogs, a respiratory breathhold maneuver without spontaenous breathing at different positive end expiratory pressure (PEEP) of 0 mmHg, 10 mmHg and 20 mmHg was applied with the position of right and left lateral recumbency, sternal recumbency, and dorsal recumbency and spiral-CT scans of the total lung were acquired. Slices were selected at three levels through the apex, middle and basal lung at the aortic arch, carina and just above the diaphragm and lung density was measured in the dorsal, ventral, and lateral portions of the peripheral lung field. Lung density in dependent areas was higher than in nondependent areas (p < 0.05) regardless of species, positions, anatomic locations at the PEEP of 0 mmHg and 10 mmHg. However, no significant difference of lung density was found at PEEP of 20 mmHg in both species except the dorsal recumbency in Shihtzu dogs. This density gradient in the dependent areas is strongly influenced by PEEP (p < 0.05). In the four positions on the CT gantry, the lung density at the dependent and nondependent location of the lung was greater at the aortic arch than at the base (p < 0.05). Lung density decreased on identical location according to increase of PEEP (p < 0.05). There was no significant difference between right and left lung density at sternal and dorsal recumbency and no significant difference of the dorsal, ventral, and lateral portions of lung density at the right and left recumbency under identical pressure. It is implied that during chest CT scan with 20 mmHg of positive end expiratory pressure with right or left lateral recumbency, canine lung density do not influenced by gravity or anatomic location.

Comparison of Two Methods of Recruiting the Acutely Injured Lung (급성 폐손상에서 폐를 Recruit시키는 방법간의 비교 연구)

  • Suh, Gee-Young;Kang, Kyeong-Woo;Park, Sang-Joon;Kim, Ho-Choel;Young, Lim-Si;Chung, Man-Pyo;Han, Jeong-Ho;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.500-512
    • /
    • 2000
  • Background : To evaluate the efficacy of two methods of obtaining lung recruitment to reduce ventilator-induced lung injury(VILI). Methods : Fifteen New-Zealand white rabbits were ventilated in the pressure-controlled mode while maintaining constant tidal volume(10 ml/kg) and fixed respiration rate. Lung injury was induced by repeated saline lavage (PaO2<100 mmHg), and the pressure-volume curve was drawn to obtain Pflex. The animals were then randomly assigned to three groups and ventilated for 4 hours. In the control group(n=5), positive end-expiratory pressure(PEEP) less than that of Pflex by 3 mmHg was applied throughout the study. In the recruitment maneuver(RM) group(n=5), RM(CPAP of 22.5 mmHg, for 45 seconds) was performed every 15 minutes in addition to PEEP level less than Pflex by 3 mmHg This phrase is unclear. In the Pflex group, PEEP of Pflex was given without RM. Gas exchange, lung mechanics, and hemodynamics parameters as well as pathology were examined. Results : 1) Both the control and RM groups showed decreasing tendency in PaO2 with time. There was significantly decreased PaO2 at 4 hr compared to Ihr(p<0.05). But in the Pflex group, PaO2 did not decrease with time(p<0.05 vs other groups at 3, 4 hr). PaCO2 did not show significant difference among the three groups. 2) There was no significant difference in static compliance and plateau pressure. Mean blood pressure and heart rate also did not show any significant difference among the three groups. 3) The pathologic exam showed significantly less neutrophil infiltration in the Pflex group than in the control group(p<0.05). There was borderline significant difference in hyaline membrane score among the groups (p= 0.0532). Conclusion : Although recruitment maneuver of the injured lung may be important in decreasing VILI, it alone may not be sufficient to minimize VILI.

  • PDF