• Title/Summary/Keyword: PEC

Search Result 295, Processing Time 0.032 seconds

Culture of osteoblast on polyelectrolyte complexes (PECs) composed of polysaccharides

  • Teramoto, Akira;Abe, Koji
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.41-42
    • /
    • 2003
  • Osteoblasts (MC3T3-E1) were cultured on polysaccharide type polyelectrolyte complex (PEC). The growth of the MC3T3-E1 on the PEC with carbxyl group (c-type) was slightly suppressed and exhibited aggregation morphology. On the other hand, cell growth on the PEC with sulfate group (s-type) was enhanced and the cell exhibited spreading form. Differentiation markers of osteoblast (ALPase activity, calcification, expression of osteocalsin) were enhanced and localized around cell aggregates on c-type PECs. These results suggest that PEC has the ability to control osteoblast proliferation and differentiation.

  • PDF

The Effects of Lift-Off from Wall Thinning Signal in Pulsed Eddy Current Testing

  • Park, Duck-Gun;Angani, C.S.;Kishore, M.B.;Kim, C.G.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.298-301
    • /
    • 2012
  • In order to know the effect of surface irregularity in the detection of local wall thinning of pipeline using pulsed eddy current (PEC), the lift-off effects on PEC signal have been investigated. Three kinds of parameters in the PEC signal, which is "peak amplitude", "time to peak amplitude" and "time to zero crossing" are analyzed to separate the lift-off effects in the PEC signal. The distance from sensor to the bottom of sample which is the total thickness of combined insulator and sample is kept constant. The magnitude of the differential peak amplitude is increased with increasing sample thickness, the time to peak amplitude is increased with increasing the sample thickness. To determine the effect of lift-off, a number of balanced transient responses combining wall thinning locations and lift-off distances were plotted.

Numerical Analysis of Through Transmission Pulsed Eddy Current Testing (투과형 펄스와전류 탐상의 수치해석)

  • Shin, Young-Kil;Choi, Dong-Myung;Lee, Chang-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2034-2035
    • /
    • 2007
  • 투과형 펄스와전류(Pulsed Eddy Current; PEC) 탐상을 대상으로 수치해석 방법을 사용하여 펄스와전류 탐상신호를 예측하고, 펄스의 폭이 신호에 미치는 영향을 조사하였다. 그 결과 전도도나 두께가 증가하면 PEC 신호의 최대값이 작아지며 최대값 발생시간이 지연됨을 관찰할 수 있었고, 전도도나 두께를 측정할 때 펄스의 폭이 좁으면 신호의 최대치를 사용하는 것이 유리하고, 펄스의 폭이 넓으면 최대치가 나타나는 시간을 사용하는 것이 판별에 유리하다는 것을 알 수 있었다. 또한, lift-off가 커질수록 PEC 신호의 최대값은 작아지지만, 두 코일 사이의 간격만 일정하면 피검사체가 어디에 위치해도 신호는 거의 동일하며, 같은 두께에서 서로 다른 lift-off 변화는 PEC 신호를 한 점에서 만나게 하는 것을 알 수 있었다.

  • PDF

Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement

  • Kim, Ji-Min;Lee, Jun;Sohn, Hoon
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.129-139
    • /
    • 2018
  • Post-tensioning (PT) tendons are commonly used for the assembly of modularized concrete members, and tension is applied to the tendons during construction to facilitate the integrated behavior of the members. However, the tension in a PT tendon decreases over time due to steel corrosion and concrete creep, and consequently, the stress on the anchor head that secures the PT tendon also diminishes. This study proposes an automatic detection system to identify tension reduction in a PT tendon using pulsed-eddy-current (PEC) measurement. An eddy-current sensor is installed on the surface of the steel anchor head. The sensor creates a pulsed excitation to the driving coil and measures the resulting PEC response using the pick-up coil. The basic premise is that the tension reduction of a PT tendon results in stress reduction on the anchor head surface and a change in the PEC intensity measured by the pick-up coil. Thus, PEC measurement is used to detect the reduction of the anchor head stress and consequently the reduction of the PT tendon force below a certain threshold value. The advantages of the proposed PEC-based tension-reduction-detection (PTRD) system are (1) a low-cost (< $ 30), low-power (< 2 Watts) sensor, (2) a short inspection time (< 10 seconds), (3) high reliability and (4) the potential for embedded sensing. A 3.3 m long full-scale monostrand PT tendon was used to evaluate the performance of the proposed PTRD system. The PT tendon was tensioned to 180 kN using a custom universal tensile machine, and the tension was decreased to 0 kN at 20 kN intervals. At each tension, the PEC responses were measured, and tension reduction was successfully detected.

The Change of Peripheral Eosinophil Count after Bronchial Provocation with Inhaled Histamine in Bronchial Asthmatics (기관지 천식 환자에서 히스타민 기관지유발검사후 말초혈액 호산구수의 변화)

  • Kim, Chi-Hong;Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyoung;Han, Ki-Don;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.5
    • /
    • pp.386-391
    • /
    • 1992
  • Background: Recently, bronchial provocation of the airway of atopic asthmatic subjects with inhaled allergen has been shown to produce an initial peripheral blood eosinopenia followed by an eosinophilia occurring approximately 12 to 18 hrs after the challenge. However there are few studies about the change of peripheral eosinophil count (PEC) after bronchial provocation with nonspecific stimuli such as histamine or methacholine. Interestingly our preliminary study demonstrated a notable change of PEC during bronhial provocation with inhaled histamine in some asthmatic subjects. This study was designed to reevaluate our preliminary data and to further investigate the change of PEC during as well as after bronchial provocation with inhaled histamine in bronchial asthma tics. Methods: Sixteen asthmatic subjects participated in this study. Bronchial provocation with inhaled histamine was done between 9 AM and 12 MD. Blood samplings for PEC were done with 5 minutes intervals during the procedure, and repeated at 1 hour, 2 hours, 4 hours, 8 hours, 24 hours, and 48 hours after the procedure. Results: The results were as follows; 1) The patients were divided into two groups characterized by each pattern in the change of PEC during the procedure. A group (11 of sixten, group I) showed an increasing pattern of PEC and another group (5 of sixteen, group II) showed a decreasing pattern of PEC during the procedure. 2) Group I demonstrated a tendency to maintain continuously higher level of PEC than the baseline value until 48 hours after the procedure. 3) Group II demonstrated a tendency to maintain continuously lower level of PEC than the baseline value until 48 hours after the procedure. 4) There were no significant differences in their clinical parameters including baseline eosinophil count, baseline $FEV_1$, $PC_{20}$ of histamine, and serum IgE level between group I and group II. Conclusion: Our results suggest that the change of PEC produced by inhaled histamine in asthmatic subjects is much different from that produced by inhaled allergen, and that each patient may have their individual characteristics in the change of PEC in response to bronchial provocation with inhaled histamine. Alternatively these findings suggest that eosinophils may be partially involved in the early asthmatic reaction.

  • PDF

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

BMP-2 Immoblized in BCP-Chitosan-Hyaluronic Acid Hybrid Scaffold for Bone Tissue Engineering

  • Nath, Subrata Deb;Abueva, Celine;Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.704-709
    • /
    • 2014
  • In this study, we fabricated a novel micro porous hybrid scaffold of biphasic calcium phosphate (BCP) and a polylectrolyte complex (PEC) of chitosan (CS) and hyaluronic acid (HA). The fabrication process included loading of CS-HA PEC in a bare BCP scaffold followed by lypophilization. SEM observation and porosimetry revealed that the scaffold was full of micro and macro pores with total porosity of more than 60 % and pore size in the range of $20{\sim}200{\mu}m$. The composite scaffold was mechanically stronger than the bare BCP scaffold and was significantly stronger than the CS-HA PEC polymer scaffold. Bone morphogenetic growth factor (BMP-2) was immobilized in CS-HA PEC in order to integrate the osteoinductive potentiality required for osteogenesis. The BCP frame, prepared by sponge replica, worked as a physical barrier that prolonged the BMP-2 release significantly. The preliminary biocompatibility data show improved biological performance of the BMP-2 immobilized hybrid scaffold in the presence of rabbit bone marrow stem cells (rBMSC).

Characterization of CNT/TiO2 Electrode Prepared Through Impregnation with TNB and Their Photoelectrocatalytic Properties

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.32-40
    • /
    • 2009
  • In this study, we have prepared three kinds of carbon nanometer tube $CNT/TiO_{2}$ electrodes through impregnation with different concentration titanium n-butoxide (TNB) solution. The prepared electrodes were characterized with surface properties, structural crystallinity, elemental identification and photoelectrocatalytic activity. The $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine CNT. This indicated the blocking of micropores on the surface of CNT, which was further supported by observation via SEM. XRD results showed patterns for the composites and a typical single and clear anatase crystal structure. The main elements such as C, O and Ti were existed for all samples from the EDX data. The catalytic efficiency of the developed electrode was evaluated by the photoelectrodegradation of methylene blue (MB). The positive potential applied in photoelectrocatalytic (PEC) oxidation was studied. It was found that photoelectrocatalytic (PEC) decomposition of MB solution could be attributed to combination effects between $TiO_2$ photocatalytic and CNT electro-assisted. Through the comparison between photocatalytic (PC) oxidation and photoelectrocatalytic (PEC) oxidation, it was found that the PEC oxidation efficiency for MB is higher than that of PC oxidation.

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Power supply system of the telecommunication equipment with monitoring function (모니터 기능을 갖는 통신기기용 전원 시스템)

  • Lee, Jung-Kee;Kim, Young-Tae;Kim, Chang-Sun;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.309-311
    • /
    • 1995
  • Recently, a power supply system of the telecommunication equipments with monitoring function has been widely studied. In the power supply system which is apart from the central station, it is required to check and test the operating states of the system at the central station. In this paper, the power supply system with monitoring function is discussed. In the system, the Full-Bridge converter is designed as a power supply and it has the ratings of DC 280-340V input and DC 48V, 480W output. And the monitoring part of the system is composed of a voltage and current sensing unit A/D converter, I/O card, and a personal computer. The operating states of the system is monitored by checking the voltage and current variation at input and output, and it is represented by graphical modes. By conducting the experiment, it is confirmed that the operating states of the system is well monitored.

  • PDF