• Title/Summary/Keyword: PE/rubber composite

Search Result 6, Processing Time 0.017 seconds

Mechanical Properties of Polyethylene/Polypropylene/Waste Tire Rubber Powder Composites (폴리에틸렌/폴리프로필렌/폐타이어고무분말 복합체의 기계적 특성)

  • Choi, Jeong-Su;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.318-323
    • /
    • 2011
  • To recycle the waste tire rubber powder, rubber powder composite for waterproof sheet was prepared, and analyzed the effect of the kind of resin and the amount of crosslinking agent on the mechanical property of the composites. The elongation-at-break of the PE composite increased more than 3 times as EPDM was added into rubber composites. As the content of the crosslinking agent increased, the tensile strength of composite increased as well. When recycled polypropylene was used, the increase in composite's tensile strength was more than 3 times. Therefore to use the recycled PP in composite is more effective rather than PP in term mechanical properties.

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.

A Study on the Manufacturing, Mechanical Properties,Abrasion Resistance, and Slow Crack Growth Resistance of the Recycled Polyethylene/Fly Ash Composites (재생 폴리에틸렌/비산회 분말 충전 복합체 제조와 기계적 물성, 내마모성 및 저속균열성장 저항성에 관한 연구)

  • Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • The virgin and recycled polyethylene composites with various ratio of fly ash were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of fly ash from power plant and post-consumed polyethylene. Fly ash were blended with virgin HDPE and recycled polyethylene at the weight fraction of 0 to 40 wt.%. Mechanical properties such as yield strength, abrasion resistance, and slow crack resistance were measured with ISO and ASTM standards. The experimental results for the various composites showed that the elongation at break and the yield stress of the composites decreased with increasing fly ash contents. Generally, the abrasion resistance of PEs decreased with increasing sandpaper grits but the abrasion resistance of the composites increased with fly ash content at finer abrasive surface. The slow crack growth resistance of virgin HDPE, recycled JRPE and the JRPE composite showed higher slow crack growth resistance up to 50% of load at notch depth of 20% and 30%, but KRPE and the KRPE composite showed much lower resistance than virgin HDPE, JRPE and the JRPE composite. Time to break, measured with NCLS test method, of all PEs and the composites satisfies the regulation of Korean Industrial Specification for sewer pipe and support application.

A Study on the Fire Risk of Car Interior Materials (자동차 내장재의 화재위험성에 관한 연구)

  • Lee, Hae-Pyeong;Kim, Young-Tak
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.82-88
    • /
    • 2010
  • In this study, we have performed several tests for composite plastic materials to be applied on interior materials of a vehicle to identify their combustion characteristics using cone calorimeter, smoke density chamber and toxicity index chamber. We have prepared a total of 12 samples for 4 major parts of a vehicle wherein each major part has 3 different materials. The results of cone calorimeter test showed ignition time of PVC sheet and PVC leather were 2s. The 8 samples showed under less than 10s of ignition time. The sample comprising Nylon and PE had the biggest maximum heat release rate of 635 $kW/m^2$. The sample comprising Rubber showed the smallest maximum heat release rate but with the biggest total heat release. The results of smoke density chamber test showed the sample that is made up with Rubber had the biggest specific optical smoke density. The sample comprising PVC leather and PUR showed the biggest VOF4 which enables the initial smoke production. The results of toxicity index test showed that all samples contained carbon dioxide content exceeding its lethal concentration. The sample comprising PVC showed high content of hydrogen chloride and hydrogen bromide. The PVC sheet showed the biggest toxicity index calculated by using lethal concentration and test results. Toxicity index of all sample wes over 1.

Poly(ether block amide) (PEBA) Based Membranes for Carbon Dioxide Separation (이산화탄소 분리를 위한 PEBA공중합체 기반 분리막)

  • Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Poly(ether block amide) (PEBA) is one of the commercially important class of block copolymer very much suitable specifically for $CO_2$ separation. Gas separation membrane need to have good mechanical strength as well as high gas permeability. The crystalline polyamide (PA) block provides the mechanical strength while the rubbery polyether (PE) group being $CO_2$-philic facilitate $CO_2$ permeation though the membrane. Composition of thermoplastic and rubbery phase in the polymer are changed to fit into suitable gas separation application. Although PEBA has good permeability, the selectivity of the membrane can be enhanced by incorporating molecular sieve without affection much the gas permeability. Mixed matrix membrane (MMM), a class of composite membrane combine the advantage of polymer matrix with the inorganic fillers. However, there are some disadvantages based on the compatibility of the inorganic fillers and polymeric phase. This review covers both the advantage and limitations of PEBA block copolymer based composite membrane.