연속음성인식 시스템의 실용화를 위해서 가장 중요한 것은 높은 인식 성능을 가지면서 동시에 실시간으로 인식되어야 한다. 이를 위하여 본 연구에서는 먼저 연속음성인식의 인식률 향상을 위하여 효과적인 음향모델을 구성하기 위하여 PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) 알고리즘을 도입하여 HM-Net을 구성하고, 언어모델로서 반복학습을 이용하여 인식률 향상을 제고한다. 그리고, 기존의 연구에서 유효함이 입증된 프레임 단위 적응 프루닝 알고리즘을 연속음성에 적용하여 인식 속도를 개선하고자 한다. 제안된 방법의 유효성을 확인하기 위하여, 남성 4인이 항공편 예약 관련 음성에 대하여 인식 실험을 수행하였다. 그 결과 연속음성인식률 90.9%, 단어인식률 90.7%의 높은 인식성능을 얻었으며, 적응 프루닝 알고리즘을 적용한 경우 인식성능의 저하없이 약 1.2초(전체의 15%)의 인식시간을 줄일 수 있어 제안된 방법의 유효성을 확인할 수 있었다.
본 논문에서는 HM-Net (Hidden Markov Network)을 다양한 태스크에의 적용과 화자의 특성을 효과적으로 나타내기 위해 HM-Net 음성인식 시스템에 MLLR (Maximum Likelihood Linear Regression) 적응방법을 도입하였으며, HM-Net 학습 알고리즘을 개량하여 회귀클래스 생성방법을 제안한다. 제안방법은 PDT-SSS (Phonetic Decision Tree-based Successive State Splitting)알고리즘의 문맥방향 상태분할에 의한 상태레벨 공유를 이용한 방법이다. 즉, 문맥방향의 각 상태에 적응화자 음성데이터에 포함된 문맥정보를 분할하여 적응화될 음소환경을 결정하는 것이다. 따라서 제안방법은 새로운 화자로부터 문맥정보와 적응화 데이터의 발성 양에 의존하여 결정된 많은 적응 파라미터들을 (평균, 분산) 자유롭게 제어할 수 있게 된다. 제안방법의 유효성을 확인하기 위해 국어공학센터 (KLE) 452 데이터와 항공편 예약관련 (YNU200) 연속음성을 대상으로 인식실험을 수행한 결과, 음소인식, 단어인식, 연속음성인식에 대해서, 평균 34∼37%, 평균 9%, 평균 20%의 성능 향상을 각각 보였다. 또한 적응화 데이터의 양에 따른 인식성능 비교에서 제안방법을 적용한 인식 시스템이 적응 데이터의 양이 적은 경우에도 향상된 인식률을 보여 MLLR 적응방법의 특성을 만족하였다. 따라서 MLLR 적응방법을 도입한 HM-Net 음성인식 시스템에 제안한 회귀클래스 생성방법이 유효함을 확인할 수 있었다.
본 연구에서는 한국어 음성인식 성능향상을 위한 문맥의존 음향 모델을 개선하기 위하여 한국어 음성학적 지식과 결정트리를 접목한 음소결정트리 기반 상태분할 알고리즘으로 한국어에 적합한 문맥의존 음향 모델에 관해 고찰한다. HMM (Hidden Markov Model)의 각 상태를 네트워크로 연결하여 문맥의존 음향모델로 표현하는 HM-Net(Hidden Markov Network)이 있는데 이는 SSS(Successive State Splitting) 알고리즘으로 작성한다. 이 방법은 음향 모델의 상태공유관계와 모델의구조를 결정하는데 효율적이지만 모델을 학습할때 문맥환경에 따라 출현하지 않는 문맥이 존재하는 문제점이 있다 본 연구에서는 이러한 문제점을 해결하기 위해 2진 결정트리와 SSS 알고리즘의 장점을 결합하여 문맥방향 상태분할을 수행할 때 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어에 따라 상태분할 하는 방법으로서 PDT-SSS(Phonetic Decision Tree-based SSS) 알고리즘을 적용한다. 적용한 방법으로 작성한 문맥의존 음향 모델의 유효성을 확인하기 위해 국어공학센터 (KLE)m이 452 단어와 항공편 예약관련 200문장(YNU 200)에 대해 화자독립 음소, 단어 및 연속음성인식 실험을 수행하였다. 인식실험결과, 문맥 의존 음향모델에 대한 화자독립 음소, 단어 및 연속음성 인식실험에서 기존의 단일 HMM 모델보다 향상된 인식률을 보여, 한국어에 적합한 문맥의존 음향 모델을 작성하는데 한국어 음성학적 지식과 음소결정트리 기반 상태분할 알고리즘이 유효함을 확인하였다.
본 연구에서는 강건한 문맥의존 음향모델을 작성하기 위한 기초적인 연구로서 문맥환경과 상태수의 변화에 따른 음향모델의 성능을 고찰하고자 한다. 음성은 시간함수로 표현되며 음절, 단어, 연속음성을 발성할때 자음과 모음에 따라 발성시간에 차이가 있으며 음성인식의 최소 인식단위로 널리 사용되는 음소의 앞과 뒤에 오는 문맥환경에 따라 인식성능에 많은 차이를 보이고 있다. 따라서 본 연구에서는 시간의 변화(상태수의 변화)와 상태분할 과정에서 문맥환경의 변화를 고려하여 다양한 형태의 문맥의존 음향모델을 작성하였다. 모델학습은 음소결정트리 기반 SSS 알고리즘(Phonetic Decision Tree-based Successive State Splitting: PDT-555)을 이용하였다 PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 본 연구에서 강건한 문맥의존 음향모델을 학습하기 위한 방법의 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행하였다. 실험결과, 음성의 시간변이에 따른 모델의 상태수와 각 음소의 문맥환경에 따라 인식성능의 변화를 고찰할 수 있었다. 따라서 본 연구는 향후 음성인식 시스템의 강건한 문맥의존 음향모델을 작성하는데 유효할 것으로 기대된다.
일반적으로 음성은 시간함수로 표현되며 음성인식에서 표준모델을 모델링하는 것은 매우 중요한 문제이다. 음절 단어, 연속음성을 발성할 때 자음과 모음에 따라 발성시간에 차이가 있으며 이를 잘 모델링하는 것 또한 음성인식에서는 중요한 문제라고 할 수 있다. 따라서 본 연구에서는 강건한 음향모델을 학습하기 위해 시간의 변화와 상태분할과정에서의 모델의 변화를 고려하여 다양한 구조의 초기모델을 작성하였다. 각 초기모델에 의한 HM-Net 문맥의존 음향모델은 음소결정트리 기반 SSS 알고리즘(PDT-SSS)을 이용하였다. PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 음성의 시간변이를 고려한 강건한 문맥의존 음향모델을 작성하기 위해 설정한 각 모델의 구조에 대한 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행한 결과. 음소인식의 경우 상태수 2000개에서 2상태 구조의 모델에 비해 4상태 구조가 약 11.4% 향상된 인식성능과 39.2초의 인식시간을 단축할 수 있었다. 또한 단어인식의 경우 상태수 2000개에서 1상태 구조의 모델에 비해 4상태 구조가 약 5% 향상된 인식성능과 4상태 구조에서 한 단어를 인식하는데 평균 0.8초가 소요되었다. 따라서 강건한 문맥의존 음향모델을 작성하기 위해 수행한 초기모델의 구조에 관한 연구가 향후 음성인식 시스템을 구축하는데 유효함을 확인할 수 있었다.
본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.
In this paper, we carried out the word, 4 continuous digits. continuous, and task-independent word recognition experiments to verify the effectiveness of the re-defined phoneme-likely units (PLUs) for the phonetic decision tree based HM-Net (Hidden Markov Network) context-dependent (CD) acoustic modeling in Korean appropriately. In case of the 48 PLUs, the phonemes /ㅂ/, /ㄷ/, /ㄱ/ are separated by initial sound, medial vowel, final consonant, and the consonants /ㄹ/, /ㅈ/, /ㅎ/ are also separated by initial sound, final consonant according to the position of syllable, word, and sentence, respectively. In this paper. therefore, we re-define the 39 PLUs by unifying the one phoneme in the separated initial sound, medial vowel, and final consonant of the 48 PLUs to construct the CD acoustic models effectively. Through the experimental results using the re-defined 39 PLUs, in word recognition experiments with the context-independent (CI) acoustic models, the 48 PLUs has an average of 7.06%, higher recognition accuracy than the 39 PLUs used. But in the speaker-independent word recognition experiments with the CD acoustic models, the 39 PLUs has an average of 0.61% better recognition accuracy than the 48 PLUs used. In the 4 continuous digits recognition experiments with the liaison phenomena. the 39 PLUs has also an average of 6.55% higher recognition accuracy. And then, in continuous speech recognition experiments, the 39 PLUs has an average of 15.08% better recognition accuracy than the 48 PLUs used too. Finally, though the 48, 39 PLUs have the lower recognition accuracy, the 39 PLUs has an average of 1.17% higher recognition characteristic than the 48 PLUs used in the task-independent word recognition experiments according to the unknown contextual factor. Through the above experiments, we verified the effectiveness of the re-defined 39 PLUs compared to the 48PLUs to construct the CD acoustic models in this paper.
본 논문은 한국어 음성인식에서 음향모델의 성능개선을 위한 기초적 연구로서 결정트리 상태 클러스터링에 의한 HM-Net (Hidden Markov Network)의 구조결정 알고리즘을 이용한 음성인식에 관한 연구를 수행하였다. 한국어는 다른 언어와 비교하여 많은 문법과 변이음이 존재하는데, 국어 음성학에서 정의한 다양한 변이음을 조사하고, 음소결정트리를 위한 음소 질의어 집합을 작성하였다. 본 논문의 HM-Net 구조결정 알고리즘의 아이디어는 SSS (Successive State Splitting) 알고리즘의 구조를 가지면서 미리 작성해 둔 문맥의존 음향모델의 상태를 다시 분할하는 방법이다. 즉, 모델의 각 상태위치마다 음소 질의어 집합에 의해 음소결정트리를 생성하고, PDT-SSS (Phonetic Decision Tree-based SSS) 알고리즘에 의해 문맥의존 음향모델의 상태열을 다시 학습하는 방법이다. 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하기 위해, 국어공학센터 (KLE)의 452단어와 항공편 예약에 관련된 YNU200 문장을 대상으로 음성인식 실험을 수행하였다. 인식실험 결과, 음소, 단어, 연속음성인식 실험에서 상태분할을 수행한 후 상태수의 변화에 따라 인식률이 점진적으로 향상됨을 확인하였다. 상태수 2,000일 때 음소, 단어 인식률이 평균 71.5%, 99.2%를 각각 얻었으며, 연속음성인식률은 상태수 800일 때 평균 91.6%를 얻었다. 또한 HM-Net 구조결정 알고리즘의 파라미터 공유관계를 비교하기 위해 상태공유를 수행하는 HTK를 이용한 단어인식 실험을 수행하였다. 실험결과, HTK를 이용한 문맥의존 음향모델에 비해 평균 4.0%의 인식률 향상을 보여, 본 논문에서 적용한 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하였다.
본 논문에서는 한국전자통신연구원에서 제공된 대어휘 음성DB를 이용하여 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다 HM-Net은 PDT-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행한다. 이러한 상태분할을 수행하여 파라미터를 공유하게 되며 최적인 모델 네트워크를 작성하게 된다. 대어휘 음성데이터를 이용하여 음향모델을 작성하고 인식실험을 수행한 결과, 100명의 100단어와 60문장에 대해 평균 97.5%, 96.7%의 인식률을 보였다.
본 연구에서는 KM-Net(Hidden Markov Network)을 다양한 태스크에의 적용과 화자의 특성을 효과적으로 나타내기 위해 HM-Net 음성인식 시스템에 MLLR(Maximum Likelihood Linear Regression) 적응방법을 도입하였으며, HM-Net 학습 알고리즘을 개량하여 회귀클래스 생성방법을 제안한다. 제안방법은 PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) 알고리즘의 문맥방향 상태분할에 의한 상태레벨 공유를 이용한 방법으로 새로운 화자로부터 문맥정보와 적응화 데이터의 발성 양에 의존하여 결정된 많은 적응 파라미터들을(평균, 분산) 자유롭게 제어할 수 있게 된다. 제안방법의 유효성을 확인하기 위해 국어공학센터(KLE) 452 음성 데이터와 항공편 예약관련 연속음성을 대상으로 인식실험을 수행한 결과, 전체적으로 음소인식의 경우 평균 34-37%, 단어인식의 경우 평균 9%, 연속음성인식의 경우 평균 7-8%의 인식성능 향상을 각각 보였다. 또한 적응화 데이터의 양에 따른 인식성능 비교에서, 제안방법을 적용한 인식 시스템이 적응 데이터의 양이 적은 경우에도 향상된 인식률을 보였으며. 잡음을 부가한 음성에 대한 적응화 실험에서도 향상된 인식성능을 보여 MLLR 적응방법의 특성을 만족하였다. 따라서 MLLR 적응방법을 도입한 HM-Net 음성인식 시스템에 제안한 회귀클래스 생성방법이 유효함을 확인한 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.