• Title/Summary/Keyword: PDT photosensitizer

Search Result 45, Processing Time 0.023 seconds

PHOTODYNAMIC THERAPY OF PREMALIGNANT AND MALIGNANT LESIONS IN ORAL AND MAXILLOFACIAL SURGERY (구강악안면외과 영역의 전암병소 및 악성종양 치료를 위한 광역학 요법의 이용)

  • Oh, Jung-Hwan;Kubler, Alexander;Zoller, Joachim E.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.234-238
    • /
    • 2002
  • Photodynamic therapy (PDT) is based on a photochemical reaction which is initiated by light activation of a photosensitizer. The photosensitizer accumulates more in tumor tissues than in normal tissues and is activated with specific wavelength of light, usually laser. The photochemical reaction produces highly reactive oxygen products causing cytotoxiciy and vascular shutdown to the tumor. The advantages of PDT are its relative selective tumor destruction and tissue healing by regeneration, which can maintain important structures with very good functional and esthetic results. Therefore, PDT is considered as an alternative modality for cancers of the head and neck. In this article, we will report three cases of photodynamic therapy for treatment of oral leukoplakia, squamous cell carcinoma, and basal cell carcinoma of head and neck. It was observed that premalignant and malignant lesions responded well to the photodynamic therapy with Aminolevulinic acid (ALA) and $Foscan^{(R)}$. Photodynamic therapy can be considered as a new treatment method for the premalignant and malignant tumors in Oral and Maxillofacial Surgery.

Antimicrobial Photodynamic Therapy on Pseudomonas aeruginosa Using a Diode Laser and PhotoMed, Methyl Pheophorbide A, or Radachlorin® (다이오드 레이저와 PhotoMed, Methyl Pheophorbide A, Radachlorin®을 이용한 녹농균에 대한 항균 광역학 요법)

  • Young-Kyu SONG;Keun-Dol YOOK;Ji-Won KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.52-58
    • /
    • 2024
  • Photodynamic therapy (PDT) activates intracellular oxygen using a photosensitizer activated by light of a specific wavelength and is a potential means of treating wound infections caused by antibiotic-resistant bacteria. Pseudomonas aeruginosa (P. aeruginosa) is typically non-pathogenic in healthy individuals but can induce severe illnesses like sepsis in the immunocompromised. Antibiotics have been conventionally used to treat P. aeruginosa infections, but increasing antibiotic resistance caused by drug misuse poses a growing challenge to the management of these infections. This study aimed to investigate the ability of PDT using photosensitizers (PhotoMed, Methyl pheophorbide A, or Radachlorin®) and a diode laser to inhibit P. aeruginosa. Suspensions of P. aeruginosa and a photosensitizer were inoculated into Petri dishes and incubated for 30 minutes. Samples were then irradiated with the laser at 3 J/cm2, and after incubation, colony areas were measured. P. aeruginosa killing rates were 79.65% for PhotoMed, 47.36% for Methyl pheophorbide A, and 40.91% for Radachlorin®. This study shows that PDT using a diode laser and a photosensitizer constitutes an effective practical therapeutic approach for inhibiting P. aeruginosa.

Postantibiotic Effects of Photodynamic Therapy Using Erythrosine and Light Emitting Diode on Streptococcus mutans

  • Yoo, Min Seok;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.39-43
    • /
    • 2016
  • Dental caries, the most common oral disease, is a multifactorial disease caused by interactions among bacteria within the dental plaque, food, and saliva, resulting in tooth destruction. Streptococcus mutans has been strongly implicated as the causative organism in dental caries and is frequently isolated from human dental plaque. Photodynamic therapy (PDT) is a technique that involves the activation of photosensitizer by light in the presence of tissue oxygen, resulting in the production of reactive radicals capable of inducing cell death. Postantibiotic effect (PAE) is defined as the duration of suppressed bacterial growth following brief exposure to an antibiotic. In this study, the in vitro PAE of PDT using erythrosine and light emitting diode on S. mutans ATCC 25175 was investigated. The PAE of PDT for 1 s irradiation and 3 s irradiation were 1.65 h and 2.1 h, respectively. The present study thus confirmed PAE of PDT using erythrosine on S. mutans.

Topical Photodynamic Therapy with Triptophan and Riboflavin for the Treatment of Acne vulgaris (트립토판과 리보플라빈을 이용한 광역동 치료의 여드름 치료 효과)

  • Yun, Young-Hee;Kim, Tae-Yeol;Choi, In-Hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.4
    • /
    • pp.89-98
    • /
    • 2012
  • Objective : Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) has increasingly been used for the treatment of acne vulgaris and several studies have shown its clinical efficacy. However, ALA-PDT needs a relatively long incubation period and is frequently associated with adverse effects. Triptophan and Riboflavin has been introduced as a new photosensitizer for the treatment of acne recently. Method : 11 patients with acne vulgaris were received PDT with tryptophan and riboflavin four to six times over two to three months. The photos of each patient were taken before and after treatment. Result and conclusion : PDT with tryptophan and riboflavin may be an effective and safe treatment for the Acne vulgaris patients.

The Effects of Photodynamic Therapy for Vancomycin-resistant Enterococci

  • Kwon, Pil Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.3
    • /
    • pp.124-132
    • /
    • 2011
  • The aim of this study was to evaluate the effects of the photosensitizer photogem with light-emitting diode (LED) on vancomycin-resistant enterococci (VRE). Two VRE strains isolated from the feces of patients. that was identificated Enterococcus faecium (vanA) and Enterococcus gallinarum (vanC1) using traditional biochemical tests and confirmed VRE genotyping from using polymerase chain reaction. In addition, three strains were used Enterococcus. faecalis CDC-286 (vanA), E. faecalis CDC-583 (vanB) and E. gallinarum CDC-42 (vanC1). To examine the antimicrobial effect of photogem mediated photodynamic therapy (PDT) against, CFU quantification and Disk diffusion antimicrobial susceptibility test were evaluated. The effects of Photodynamic therapy was not associated with genotype. Photogem mediated PDT perfectly inhibited the colony formation of E. faecalis CDC-286. The number of viable bacteria decreased greatly after PDT application with photogem $50{\mu}g/mL$ and energy density of $15J/cm^2$. The diameter of inhibition zone was increased to after PDT more than before PDT. The case of vancomycin disc on E. faecalis CDC-583 and E. galinanum-Patient were changed from resistant to intermediate resistant, from intermediate resistant to susceptable. These results demonstrate that lethal photosensitization of VRE can be achieved using photogem plus 630 nm LED irradiation.

  • PDF

Detection of 1270 nm Emission from Singlet Oxygen due to Photodynamic Therapy in vitro and in vivo.

  • Hirano, Toru;Kohno, Eiji;Ito, Toshiaki;Okazaki, Shigetoshi;Hirohata, Toru;Niigaki, Minoru;Kageyama, Kazumi;Miyaki, Sueo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.515-517
    • /
    • 2002
  • Photodynamic therapy (PDT) is a cancer treatment modality which utilizes the cytotoxicity of the active singlet oxygen derived from irradiation of a tumor accumulated photosensitizer. As the oxygen in the singlet state radiates an emission of 1270nm wavelength when it decays to the triplet state, detection of the emission helps us to understand the mechanism of PDT or to evaluate photosensitizers. We detected the 1270nm emission from photosensitizers Photofrin and ATX-SI0 in vitro and in vivo by means of high sensitive NIR detectors. We obtained the maximum amount of singlet oxygen at irradiation wavelength of 665-670nm from a HeLa tumor in a nude mouse which is injected with ATX-S10.

  • PDF

Antimicrobial Effect of Photodynamic Therapy Using Plaque Disclosing Agent (치면착색제를 이용한 광역동 치료의 항균 효과)

  • Kho, Junhee;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • The aim of this study was to evaluate the antimicrobial effect of photodynamic therapy (PDT) using plaque disclosing agent, 10 - 20 mM erythrosine, as a photosensitizer. Multispecies cariogenic biofilms containing Streptococcus mutans, Lactobacillus casei and Candida albicans were formed on hydroxyapatite disc. 20 μM, 10 mM and 20 mM erythrosine were applied as a photosensitizer for 3 minutes, and then light-emitting diode (LED) irradiated for 24 seconds. Colony-forming unit (CFU) were measured and biofilms were observed using confocal laser scanning microscopy (CLSM). CFU were significantly decreased in the PDT groups using 10 - 20 mM erythrosine (10 mM, 20mM) and the results were also confirmed by CLSM. This study confirms the high antimicrobial effect of photodynamic therapy using plaque disclosing agent as a photosensitizer.

Enhanced Susceptibility of Human Squamous Cell Carcinoma to Photodynamic Therapy Combined with Administration of Cisplatin

  • Ahn, Jin-Chul;Chung, Pil-Sang;Park, Byung-Kuhn
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • We have compared the antitumor effect of photodynamic therapy (PDT), using 5-aminolevulinic acid (ALA) as the photosensitizer, combined with cisplatin (CDDP) on AMC-HN3 human squamous cell carcinoma. AMC-HN3 cells were cultured and then incubated with various concentrations of CDDP and ALA. 632 nm diode laser was given at $6.0J/cm^2$ followed by incubation for 24 hours. The evaluation of cell viability was done by MTT assay. In vivo CDDP was injected intraperitoneally 24 hours prior to PDT. The anti-tumor effects of each treatment were measured by tumor volume change. Cell viability were 44.29% for the cisplatin-mediated chemotherapy group $(6.25{\mu}g/ml)$, 77.22% for ALA-PDT group, and 15.06% for the Combination therapy group. In vivo, the antitumor effect of photodynamic therapy was enhanced by combination of Cisplatin-mediated chemotherapy. Photodynamic therapy combined with administration of Cisplatin appears to enhance antitumor effect and to be a useful treatment modality.

  • PDF

Photodynamic Therapy for Cancer without External Light Illumination by Utilizing Radioisotope-induced Cerenkov Luminescence as an Excitation Source

  • Chi Soo Kang;Md. Saidul Islam;Dohyeon Kim;Kyo Chul Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2023
  • Photodynamic therapy (PDT), in which a photosensitizer (PS), light, and molecular oxygen are essential components, is a non-invasive and highly effective cancer therapeutic method. However, PDT suffers from the penetration limit of light caused by attenuation and scattering of light through tissues constraining its use to skin and endoscopically accessible cancers. Cerenkov luminescence (CL) is defined as the light illuminated when charged particles move in a dielectric medium at a velocity greater than the phase velocity of light. It is known that medical radioisotopes in preclinical and clinical settings have enough energy to generate CL, and lately, CL has been exploited as an excitation source for PDT without external light illumination. This review introduces state of the art studies of radioisotope-based PDT for cancer, in which radioisotopes are utilized as a light source.

The Anticancer Effect and Mechanism of Photodynamic Therapy Using 9-Hydroxypheophorbide-a and 660 nm Diode Laser on Human Squamous Carcinoma Cell Line. (9-hydroxypheophorbide-a와 660 nm 다이오드 레이저를 이용한 광역학치료의 항암효과와 치료기전에 대한 연구)

  • Ahn, Jin-Chul
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.770-780
    • /
    • 2009
  • A new photosensitizer, 9-Hydroxypheophorbide-a (9-HpbD-a), was derived from Spirulina platensis. We conducted a series of experiments, in vitro and in vivo, to evaluate the anticancer effect and mechanism of photodynamic therapy using 9-HpbD-a and 660 nm diode lasers on a squamous carcinoma cell line. We studied the cytotoxic effects of pheophytin-a, 9-HpbD-a, 9-HpbD-a red and 660 nm diode lasers in a human head and neck cancer cell line (SNU-1041). Cell growth inhibition was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The effects of 9-HpbD was higher than those of 9-HpbD-a red or pheophytin-a in PDT. We then tested the cytotoxic effects of 9-hydroxypheophorbide-a (9-HpbD-a) in vitro. The cultured SNU-I041 cells were treated with serial concentrations of 9-HpbD-a followed by various energy doses (0, 0.1, 0.5, 3.2 J/$cm^{2}$) and by various interval times (0, 3, 6, 9, 12 hr) until laser irradiation, then MTT assay was applied to measure the relative inhibitory effects of photodynamic therapy (PDT). Optimal laser irradiation time was 30 minutes and the cytotoxic effects according to incubation time after 9-HpbD-a treatment increased until 6 hours, after which it then showed no increase. To observe the cell death mechanism after PDT, SUN-I041 cells were stained by Hoechst 33342 and propidium iodide after PDT, and observed under transmission electron microscopy (TEM). The principal mechanism of PDT at a low dose of 9-HpbD-a was apoptosis, and at a high dose of 9-HpbD-a it was necrosis. PDT effects were also observed in a xenografted nude mouse model. Group I (no 9-HpbD-a, no laser irradiation) and Group II (9-HpbD-a injection only) showed no response (4/4, 100%), and Group III (laser irradiation only) showed recurrence (1/4,25%) or no response (3/4, 75 %). Group IV (9-HpbD-a + laser irradiation) showed complete response (10/16, 62.5%), recurrence (4/16, 25%) or no response (2/16, 12.5%). Group IV showed a significant remission rate compared to other groups (p<0.05). These results suggest that 9-HpbD-a is a promising photosensitizer for the future and that further studies on biodistribution, toxicity and mechanism of action would be needed to use 9-HpbD-a as a photosensitizer in the clinical setting.