• Title/Summary/Keyword: PDMS transfer

Search Result 43, Processing Time 0.027 seconds

A Study on Non-contact Surface Temperature Field Measurement of a Body Immerged in Water Using Thermographic Phosphor Thermometry (열감지인광온도계를 이용한 물에 잠긴 물체 표면 온도장의 비접촉식 측정에 관한 연구)

  • Park, Yoonseong;Cai, Tao;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.61-68
    • /
    • 2020
  • Thermographic phosphor (TP) thermometry is a noncontact optical measurement method and has been applied in many fields such as combustion and heat transfer. However, due to the limitation of bonding technology and measurement method, most TP thermometry studies were conducted only on the air environment with water-soluble binders. In this paper, a temperature measurement technology in water using TP is proposed by coatings of manganese activated magnesium fluorogermanate (Mg4FGeO6:Mn4+, MFG) with Polydimethylsiloxane (PDMS). Four MFG-PDMS coatings with different thicknesses were prepared. The lifetime of MFG was not affected by the thickness of the coating as a result of the experiment and analysis of phosphor intensity using a photomultiplier tube. To measure the surface temperature field of an immerged body in water, a cylinder-type cartridge heater was coated with MFG doped PDMS. Transient surface temperature field was successfully measured even the initial temperature is higher than the boiling point of water.

Computer Simulation for the Cavitation Changes at the Exit of Offset Printing Nip (오프셋 인쇄의 틈새출구에서 공동의 변화에 대한 시뮬레이션)

  • Youn, Jong-Tae;Kim, Yun-Taek;Lim, Soo-Man
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • Offset paper printing is a promising roll-to-roll technique for color printed materials. Although it is no doubt that understanding ink transfer mechanism in offset printing process is necessary to achieve high printing quality, investing the relationship between inks and substrates at the nip is difficult experimentally due to high printing speed. In this paper, rheological behavior and splitting point of the ink at the nip is studied using package software Ployflow and Flow 3D based on Navier-Stokes equation. Polydimethylsiloxane (PDMS) ink and IGT printability tester were used for an model ink and experiment to compare with that of simulation data, respectively. As a result, higher viscosity at state flow and pressure increased ink transfer due to higher possibility of presence of cavitation at the nip and increase in covering area ratio. These results have shown good agreements with experimental data compared by measuring density of print through.

Ink dependence of elastomeric stamp in non-photolithography

  • Kim, Jin-Ook;Park, Mi-Kyung;Lee, C.H.;Jo, G.C.;Chae, G.S.;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.919-921
    • /
    • 2005
  • We describe that an elastomeric stamp of poly(dimethylsiloxane) (PDMS) can modify the surface energy of some surfaces when brought into conformal contact with the number of stamping. We focus on an increase of the hydrophobicity of the patterned surface due to diffusion of low molecular weight (LMW) silicone polymer chains. The transfer of PDMS to the surface during patterning is relevant to and calls for attention by those who are using this method in applications where control of the surface chemistry is of importance for the application.

  • PDF

Deformation of the PDMS Membrane for a Liquid Lens Under Hydraulic Pressure

  • Gu, Haipeng;Gan, Zihao;Hong, Huajie;He, Keyan
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.391-401
    • /
    • 2021
  • In the present study, a hyperelastic constitutive model is built by complying with a simplified hyperelastic strain energy function, which yields the numerical solution for a deformed polydimethylsiloxane (PDMS) membrane in the case of axisymmetric hydraulic pressure. Moreover, a nonlinear equilibrium model is deduced to accurately express the deformation of the membrane, laying a basis for precise analysis of the optical transfer function. Comparison to experimental and simulated data suggests that the model is capable of accurately characterizing the deformation behavior of the membrane. Furthermore, the stretch ratio derived from the model applies to the geometrical optimization of the deformed membrane.

A study on mechanical characterization of nano-thick films fabricated by transfer assembly technique (이송조립기술로 제조된 나노 박막의 기계적인 특성 평가에 관한 연구)

  • Choi, Hyun-Ju;Kim, Jae-Hyun;Lee, Sang-Joo;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.30-34
    • /
    • 2008
  • The transfer assembly (or transfer printing) technique is a promising method for fabricating multi-scale structures on various substrates including semiconductors and polymers, and has been applied to fabrication of flexible devices with superior performance to conventional organic flexible devices. The mechanical behaviors of the structures fabricated by the transfer assembly is a very important information for design and reliability evaluation purpose, but the measurement of the behaviors is difficult since their critical-dimensions are very tiny. In this study, Au films with nano-scale thickness were fabricated on a silicon substrate and their mechanical properties were measured using micro-tensile test. The Au films on the silicon substrate were then transferred to a PDMS substrate using the transfer assembly technique. Self-assembled monolayer (SAM) with a thiol group was used to enhance the transfer of Au films, and the mechanical behaviors were characterized using wrinkle-based test. The test results from micro-tensile and wrinkle-based test are compared to each other, and their implication to the transfer assembly technique is discussed.

  • PDF

Wearable Resistive Strain Sensor Networked by Wireless Data Transfer System (무선 데이터 전송 시스템이 장착된 웨어러블 저항식 스트레인 센서)

  • Oh, Je-Heon;Lee, Sung-Ju;Shin, Hae-Rin;Kim, Seung-Rok;Yoo, Ju-Hyun;Park, Jin-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.43-47
    • /
    • 2018
  • In this study, we fabricated transparent resistive strain sensor by embedding silver nanowire in polydimethylsiloxane (PDMS) substrate to sense the finger bending motion electrically. Using bluetooth as wireless data transfer system, strain data was transferred to computer and smart phone application enabling near field communication. Additionally, we made a program translating resistance change by finger motion strain to save images and confirmed that it worked at application and computer.

Low-Cost Fabrication of Multimode Optical Waveguides for Optical Interconnects (광 연결을 위한 저가형 멀티모드 광 도파로의 제작)

  • 이병탁;권민석;윤준보;신상영
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.315-318
    • /
    • 1999
  • As low-cost optical waveguides of optical interconnects, we fabricate multimode optical waveguides using a molding process The core size of a optical waveguide is 47 ${\mu}{\textrm}{m}$ $\times$ 41 ${\mu}{\textrm}{m}$. We use the photoresist AZ9260 as a master, polydimethyl-siloxane (PDMS) as a mold. In transferring process to polymeric material, we employ a modified micro-transfer molding process. All processes are simple and low-cost.

  • PDF

Fabrication and Characterization of Transparent Piezoresistors Using Carbon Nanotube Film (탄소나노튜브 필름을 이용한 투명 압저항체의 제작 및 특성 연구)

  • Lee, Kang-Won;Lee, Jung-A;Lee, Kwang-Cheol;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1857-1863
    • /
    • 2010
  • We present the fabrication and characterization of transparent carbon nanotube film (CNF) piezoresistors. CNFs were fabricated by vacuum filtration methods with 65?92% transmittance and patterned on Au-deposited silicon wafer by photolithography and dry etching. The patterned CNFs were transferred onto poly-dimethysiloxane (PDMS) using the weak adhesion property between the silicon wafer and the Au layer. The transferred CNFs were confirmed to be piezoresistors using the equation of concentrated-force-derived resistance change. The gauge factor of the CNFs was measured to range from 10 to 20 as the resistance of the CNFs increased with applied pressure. In polymer microelectromechanical systems, CNF piezoresistors are the promising materials because of their high sensitivity and low-temperature process.

Evaluation of Concentration Polarization at Feed in the Permeation of VOCs/$N_2$ mixtures through PDMS membrane (VOCs/질소 혼합물 증기투과시 공급액부 경계층에서의 농도분극 분석을 위한 모델식 확립)

  • 염충균;이상학;최정환;이정민
    • Membrane Journal
    • /
    • v.11 no.2
    • /
    • pp.74-82
    • /
    • 2001
  • By using a phenomenological approach, model equations incorporating the resistance-in¬series concept were established to evaluate quantitatively concentration polarization in the boundary layer in feed adjacent to the membrane surface in the vapor permeation and separation of volatile organic compounds (VOCS)/$N_2$ mixture through po]y(dimethylsiloxane) (PDMS) membrane. The vapor permeations of various VOCS/$N_2$ mixtures through PDMS membrane were carried out at various feed flow rates. Chlorinated hydrocarbons, such as, methylene chloride, chlorofonn, 1,2-clichloroethane and 1,1,2-trichloroethane were used as organic vapor. By fitting the model equations to the experimental penneation data. the model parameters were detennined. respectively. Both the mass transfer coefficient of VOC across tbe boundary layer and concentration polarization modulus as a measure of the extent of concentration polarization were eitimated Quantitatively by the mooe1 equations with the determined model parameters. From the analysis on the detennined model parameters, the boundary layer resistance due to the concentration polarization of VOCs component was found to be more significant when the condensability of voe was greater. This study seeks to emphasize the importance of the boundary resistance on the vapor penneation of the vapor/gas mixtures with high permeability and high selectivity towards the minor component VOC.

  • PDF

Ring-Opening Polymerization of ʟ-Lactide with Polydimethylsiloxane Based Stabilizers in Supercritical Carbon Dioxide (폴리디메틸실록산계 안정화제를 이용한 초임계 이산화탄소에서의 ʟ-Lactide의 개환중합)

  • Hwang, Ha Soo;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • Poly($\small{L}$-Lactide)(PLLA) was prepared by a ring-opening polymerization of $\small{L}$-Lactide with various polydimethylsiloxane(PDMS) based copolymers as a stabilizer in supercritical carbon dioxide($scCO_2$). The block copolymeric stabilizers were synthesized by group transfer polymerization (GTP) by using PDMS macroinitiator. PLLA was found to be produced with fairly low molecular weight distribution as confirmed by gel permeation chromatography(GPC) analysis. Scanning electron microscopy (SEM) results showed that sub-micron size Poly($\small{L}$-lactide)(PLLA) particles were formed by suspension polymerization.

  • PDF