• Title/Summary/Keyword: PDMS structure

Search Result 115, Processing Time 0.026 seconds

Fabrication and Characterization of Triboelectric Energy Harvester

  • Sung, Tae-Hoon;Lee, Jun Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.631-631
    • /
    • 2013
  • Battery has major drawbacks including its size and life expectancy, and environmental problem. As an alternative, energy harvesting is emerging as a potential solution to replace battery along with more energy-efficient IT devices. The idea of harnessing energy from our living environment is sustainable, semi-permanent, and eco-friendly. Also, unlike battery, energy harvester does not require much space to store energy. Therefore, energy harvesting can provide a better source of power for small, portable, and wireless devices. Among various ways of harvesting energy from our surroundings, triboelectricity is chosen due to its potential to be miniaturized, and efficient. Triboelectric effect occurs as two different materials with different polarity of charge separation come into contact through friction, and then become separated so that electric potential difference is achieved. In this research, such characteristic of triboelectricity is used as a way to convert ambient mechanical energy into electric energy.Series of recent researches have shown promising results that the triboelectric energy harvester can be simple and cost effective. However, sufficient electricity level required to operate mobile devices has not yet been achieved.In this research, our group focuses on the design and optimization of triboelectric energy harvesting device to enhance its output. By using maskless lithography to pattern Kapton film and silicon substrate, which is used as a mold for PDMS thin layer, and sputtering metal electrodes on each side, we fabricate and demonstrate different designs of triboelectric energy harvester that utilizes the contact electrification between a polymer thin film and a metal thin foil. In order to achieve optimized result, the output voltage and current are measured under diverse conditions, which include different surface structure and pattern, material, and the gap between layers.

  • PDF

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure (섬(Island) 구조로 이루어진 강성도 국부변환 신축성 기판의 변형 거동)

  • Oh, Hyun-Ah;Park, Donghyeun;Shin, Soo Jin;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.117-123
    • /
    • 2015
  • In order to develop stretchable substrate technology for stretchable devices, locally stiffness-variant stretchable substrates were processed with two polydimethylsiloxane elastomers of different stiffnesses and their deformation behavior was characterized. Low-stiffness substrate matrix and embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to a configuration of 6.5 cm length, 0.4 cm thickness, and 2.5 cm width. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.13~0.33 MPa by embedding a Sylgard 184 island of 1 cm width and 1~6 cm length into the center part of the Dragon Skin 10 substrate matrix. The elastic modulus of a stretchable substrate was improved to 0.16~0.2 MPa by embedding a Sylgard 184 island of 4 cm length and 0.5~1.5 cm width and to 0.1421~0.154 MPa by embedding a Sylgard 184 island of 2 cm length and 0.5~1.5 cm width. With increasing the tensile strain of a stretchable substrate, deformation restriction of the locally stiffness-variant Sylgard 184 island was further enhanced due to substantial increase in the strength difference between Sylgard 184 and Dragon 10 at large strain.

Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating (건식 접착 구조물의 금속 코팅 두께에 따른 접착강도 변화)

  • Kim, Gyu Hye;Kwon, Da Som;Kim, Mi Jung;Kim, Su Hee;Yoon, Ji Won;An, Tea Chang;Hwang, Hui Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.673-677
    • /
    • 2016
  • Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

Preparation and characterization of poly(dimethylsiloxane) foam prepared by hydrogen condensation reaction (수소 축합 반응에 의한 폴리디메틸실록산 미세 발포체의 제조 및 물성분석 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.802-812
    • /
    • 2016
  • Silicone foam is very useful as flame resistant material for many industrial areas such as high performance gasketing, thermal shielding, vibration mounts, and press pads. A silicone foam was prepared through simultaneous crosslinking and foaming by hydrogen condensation reaction of a vinyl-containing polysiloxane (V-silicone) and a hydroxyl-containing polysiloxane (OH-silicone) with hydride containing polysiloxane (H-silicone) in the presence of platinum catalyst and imorganic filler at room temperature. This is more convenient process for silicone foam manufacturing than the conventional separated crosslinking and foaming systems. Funtionalized silicones we used in this experiment were consisted with a V-silicone containing 1,0 meq/g of vinyl groups and a viscosity of 20 Pa-s, an OH-silicone with 0.4 meq/g of hydroxyl groups and a viscosity from 50 Pa-s, and an H-silicone containing 7.5 meq/g of hydride groups and a viscosity of 0.06 Pa.s. The effects of compositions of functionalized silicones and additives, such as catalyst and filler on the structure and mechanical properties of silicone foam were studied. 0.5 wt% of Pt catalyst was enough to accelerate the foaming rate of silicone resins. The addition of OH-silicone with lower viscosity accelerates the initial foaming rate and decreases the foam density, but the addition of V-silicone with lower viscosity reduces the tensile strength as well as the elongation. The final foam density, tensile strength, and elogation of silicone foam prepared under the SF-3 condition increase maximum to $0.58g/cm^3$, $3,51kg_f/cm^2$, and 176 %, repectively. We found out the filler alumina also played an important role to improve the mechanical properties of silicone foams in our foaming system.