• 제목/요약/키워드: PDMS replica

검색결과 20건 처리시간 0.026초

미세 광소자용 도파로 정밀 복제기술 연구 (Precise Replica Technology Study for Fine Optical Waveguide Device)

  • 오승훈;김창석;정명영;부정숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1493-1496
    • /
    • 2005
  • In this paper, we describe a simple, precise and low cost method of fabricating PDMS stamp for UV embossing. It is important to improve the replication quality of stamp because the accuracy of fabricated structure is related to that of the stamp in UV embossing. The PDMS stamp has been fabricated by the replica molding technology with ultrasonic vibration to eliminate micro-air bubbles during the fabrication process of PDMS stamp. Also, this fabrication to use ultrasonic vibration promotes PDMS solution to fill into micro channel and edge parts. We report the fabrication of an optical core using UV embossing with fabricated PDMS stamp. This fabricated core is $7\;\mu{m}\;at\;depth,\;6\;\mu{m}\;at\;width.\;This\;measured\;value\;has\;the\;difference\;below\;1\;\mu{m}$compared to the original stamp. The surface roughness of core is about 14 nm root mean square. This is satisfactory value to use low-loss optical waveguide. Our successful demonstration of precise replica technology presents an alternative approach for the stamp of UV embossing.

  • PDF

바이오 멤스 및 마이크로 시스템 적용을 위한 3차원 마이크로 유로 제작 (Fabrication of 3-D microchannel for biomems and micro systems application)

  • 윤광석
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.357-361
    • /
    • 2006
  • This paper reports a new technology to implement complex PDMS microchannels, which are simply constructed using three-dimensional photoresist structures as mold for PDMS replica process. The process utilizes LOR resist as a sacrificial layer to levitate the structural photoresist and multi-step exposure to control the thicknesses of photoresist structures. Various shapes of photoresist structures were successfully fabricated. Using the PDMS replica method, the three-dimensional photoresist structures are demonstrated to be applicable for implementing complex microchannels in PDMS. In addition, more complex multilevel microchannels are constructed by bonding two PDMS layers with just single PDMS alignment.

미소접촉인쇄 공정용 철형 PDMS 스템프 제작을 위한 Pyrex 7740 glass 표면의 연성영역 나노패터닝 (Ductile-Regime Nanopatterning on Pyrex 7740 Glass Surface and Its Application to the Fabrication of Positive-tone PDMS Stamp for Microcontact Printing (${\mu}CP$))

  • 김현일;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.40-43
    • /
    • 2004
  • Stamps for microcontact processing are fabricated by casting elastomer such as PDMS on a master with a negative of the desired pattern. After curing, the PDMS stamp is peeled away from the master and exposed to a solution of ink and then dried. Transfer of the ink from the PDMS stamp to the substrate occurs during a brief contact between stamp and substrate. Generally, negative-tone masters, which are used for making positive-tone PDMS stamps, are fabricated by using photolithographic technique. The shortcomings of photolithography are a relative high-cost process and require extensive processing time and heavy capital investment to build and maintain the fabrication facilities. The goal of this study is to fabricate a negative-tone master by using Nano-indenter based patterning technique. Various sizes of V-grooves and U-groove were fabricated by using the combination of nanoscratch and HF isotropic etching technique. An achieved negative-tone structure was used as a master in the PDMS replica molding process to fabricate a positive-tone PDMS stamp.

  • PDF

광자결정 도파로 성형용 PDMS 스탬프 제작 (PDMS Stamp Fabrication for Photonic Crystal Waveguides)

  • 오승훈;최두선;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

표면개질에 의한 물방울 접촉각 변화를 이용하여 제작된 PDMS 마이크로 렌즈 (Fabrication method of PDMS microlensesusing water-based molding method)

  • 김홍기;윤광석
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.375-379
    • /
    • 2008
  • This paper reports a new fabrication method of polydimethylsiloxane (PDMS) microlenses with various curvatures by using a water-based mold. The hydrophobic surface of Polypropylene (PP) substrate was modified by corona discharge using tesla coil to have hydrophilic surface. Then hydrophilic surface of PP substrate takes hydrophobic recovery to have various contact angles from less than $25^{\circ}$ to about $84^{\circ}$. By using the water droplets with various contact angles as replica molds for PDMS process, we could obtain PDMS microlenses with various curvatures.

체크밸브가 달린 열공압 방식의 PDMS-유리마이크로 펌프에 관한 연구 (A Study About PDMS-Glass Based Thermopneumatic Micropump Integrated with Check Valve)

  • 고용준;조웅;안유민
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.720-727
    • /
    • 2008
  • Microfluidic single chip integrating thermopneumatic micropump and micro check valve are developed. The micropump and micorvalve are made of biocompatible materials, glass and PDMS, so as to be applicable to the biochip. By using the passive-type check valve, backward flow and fluid leakage are blocked and flow control is stable and precise. The chip is composed of three PDMS layers and a glass substrate. In the chip, flow channel and pump chamber were made on the PDMS layers by the replica molding technique and pump heater was made on the glass substrate by Cr/Au deposition. Diameter of the pump chamber is 7 mm and the width and depth of the channel are 200 and $180{\mu}m$, respectively. The PDMS layers chip and the heater deposited glass chip are combined by a jig and a clamp for pumping operation, and they are separable so that PDMS chip is used as a disposable but the heater chip is able to be used repeatedly. Pumping performance was simulated by CFD software and investigated experimentally. The performance was the best when the duty ratio of the applied voltage to the heater was 33%.

기계화학적 극미세 가공기술을 이용한 PDMS 복제몰딩 공정용 서브마이크로 몰드 제작에 관한 연구 (A Study on the Fabrication of Sub-Micro Mold for PDMS Replica Molding Process by Using Hyperfine Mechanochemical Machining Technique)

  • 윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.351-354
    • /
    • 2004
  • This work presents a simple and cost-effective approach for maskless fabrication of positive-tone silicon master for the replica molding of hyperfine elastomeric channel. Positive-tone silicon masters were fabricated by a maskless fabrication technique using the combination of nanoscratch by Nanoindenter ⓡ XP and XOH wet etching. Grooves were machined on a silicon surface coated with native oxide by ductile-regime nanoscratch, and they were etched in a 20 wt% KOH solution. After the KOH etching process, positive-tone structures resulted because of the etch-mask effect of the amorphous oxide layer generated by nanoscratch. The size and shape of the positive-tone structures were controlled by varying the etching time (5, 15, 18, 20, 25, 30 min) and the normal loads (1, 5 mN) during nanoscratch. Moreover, the effects of the Berkovich tip alignment (0, 45$^{\circ}$) on the deformation behavior and etching characteristic of silicon material were investigated.

  • PDF

광학적 검출을 위한 PDMS 마이크로렌즈의 제작 (Fabrication of PDMS microlens for optical detection)

  • 박세완;김현철;전국진
    • 대한전자공학회논문지SD
    • /
    • 제46권4호
    • /
    • pp.15-20
    • /
    • 2009
  • 레이저 광 산란을 이용한 검출 시스템 및 레이저를 이용한 광학적 검출에 있어서 높은 발광 강도를 통해 궁극적으로 높은 효율의 광 산란 신호를 광검출기에서 얻기 위해서는 발광 레이저빔을 미세유체 칩의 채널 중앙에 집광하는 것이 매우 중요하다. 본 논문을 통해 레이저 광 산란을 이용한 세포 검출을 위해 PDMS 마이크로렌즈가 집적화된 PDMS 미세유체 칩을 소개하고자 한다. 기존에 제작된 PDMS 미세유체 칩 위에 간편히 정렬하여 올려놓아 사용함으로써 검출 효율을 증가시킬 수 있는 PDMS 마이크로렌즈를 제작하였다. PDMS 마이크로렌즈는 포토레지스트 리플로우와 PDMS 복제 몰딩에 의해 제작되었다. 이 제작 방법은 간단하며 높은 치수 정확성 및 좋은 마이크로렌즈의 성능을 제공한다. PDMS 미세유체 칩 위에 집적화된 PDMS 마이크로렌즈가 적혈구를 이용한 레이저 광 산란을 통한 세포 검출 실험에서 레이저 강도를 증가시켜 신호대잡음비 및 감도를 증가시킴을 검증하였다.

AFM기반 기계적 TNL 패터닝을 통한 PDMS 몰드제작 (Fabrication of PDMS Mold by AFM Based Mechanical TNL Patterning)

  • 정윤준;박정우
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.831-836
    • /
    • 2013
  • This study demonstrates the process of fabricating patterns using tribonanolithography (TNL),with laboratory-made micro polycrystalline diamond (PCD) tools that are attached to an atomic force microscope (AFM). The various patterns are easily fabricated using mechanical scratching, under various normal loads, using the PCD tool on single crystal silicon, which is the master mold for replication in this study. Then, polydimethylsiloxane (PDMS) replica molds are fabricated using precise pattern transfer processes. The transferred patterns show high dimensional accuracy as compared with those of TNL-processed silicon micro molds. TNL can reduce the need for high cost and complicated apparatuses required for conventional lithography methods. TNL shows great potential in that it allows for the rapid fabrication of duplicated patterns through simple mechanical micromachining on brittle sample surfaces.