• 제목/요약/키워드: PD-1 receptor

Search Result 80, Processing Time 0.028 seconds

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.

Synthesis of Cyclen-Based Copper Complexes as a Potential Estrogen Receptor Ligand (에스트로젠 수용체 리간드로서 사이클렌을 기본 구조로 한 구리 착물의 합성)

  • Park, Jeong-Chan;Pandya, Darpan N.;Jeon, Hak-Rim;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae;Yoo, Jeong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.326-334
    • /
    • 2007
  • Purpose: The estrogen receptor (ER), which is over-expressed in ER-positive breast tumors, has been imaged by positron emission tomography (PET) using $[^{18}F]$ labeled estrogen ligands, especially $[^{18}F]FES$. However, $[^{18}F]$ has relatively short-lived half-life ($t_{1/2}$ =1.8 h) and the labeling yield of radio-fluorination is usually low compared with $^{64}Cu\;(t_{1/2}=12.7\;h)$. 1,4,7,10-tetraazacyclododecane (cyclen) is used to form stable metal complexes with copper, indium, gallium, and gadolinium. With these in mind, we prepared cyclen-based Cu complexes which mimic estradiol in aspect of two hydroxyl groups. Materials and Methods: 1.7-Protected cyclen, 1.7-bis (benzyloxycarbonyl)-cyclen was synthesized according to the reported procedure. After introducing two 4-benzyloxybenzyl groups at 4,10-positions, the benzyloxycarbonyl and benzyl groups were removed at the same time by hydrogenation on Pd/C to give 1,7-bis(4-hydroxybenzyl)-1,4,7,10-tetraazacyclododecane (1). Results: The prepared ligand 1 was fully characterized by $^1H,\;^{13}C$ NMR, and mass spectrometer. The synthesized ligand was reacted with copper chloride and copper perchlorate to give copper complexes $[Cu(1)]^{2+}2(CIO_4^-)\;and\;[Cu(1)Cl]^+Cl^-$ which were confirmed by high-resolution mass (FAB). Conclusion: We successfully synthesized a cyclen derivative of which two phenol groups are located on trans position of N-atoms. And, two Cu(ll) complexes of +2 and +1 overall charge, were prepared as a potential PET tracers for ER imaging.

Insulin-Like Growth Factor-I Induces Androgen Receptor Coactivator Expression in Skeletal Muscle Cells through the p38 MAPK and ERK1/2 Pathways (C2C12 세포에서 insulin-like growth factor-I이 p38 MAPK, ERK1/2 신호전달 경로를 통해 엔드로젠 수용체 coactivator 발현에 미치는 영향)

  • Park, Chan-Ho;Kim, Hye-Jin;Kim, Tae-Un;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.242-250
    • /
    • 2011
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) coactivators are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR coactivators and IGF-I in skeletal muscle cells has not been previously examined. In this study, the effects of IGF-I treatment on the gene expression of AR coactivators in the absence of AR ligands and the roles of the p38 MAPK and ERK1/2 signaling pathways in IGF-I-induced AR coactivators induction were examined. C2C12 cells were treated with 250 ng/ml of IGF-I in the presence or absence of specific inhibitors p38 MAPK (SB203580) or ERK1/2 (PD98059). Treatment of C2C12 cells with IGF-I resulted in increased in GRIP-1, SRC-1, and ARA70 protein expression. The levels of GRIP-1, SRC-1, and ARA70 mRNA were also significantly increased after 5min of IGF-I treatment. IGF-I-induced AR coactivator proteins were significantly blocked by pharmacological inhibitors of p38 MAPK and ERK1/2 pathways. However, there was no significant effect of those inhibitors on IGF-I-induced mRNA level of AR coactivators, suggesting that AR coactivators are post-transcriptionally regulated by IGF-I. Furthermore, the present results suggest that IGF-I stimulates the expression of AR coactivators by cooperative activation of the p38 MAPK and ERK1/2 pathways in C2C12 mouse skeletal muscle cells.

ATP and Purinergic Receptor Agonists Stimulate the Mitogen-Activated Protein Kinase Pathway and DNA Synthesis in Mouse Mammary Epithelial Cells

  • Yuh In-Sub
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • The effects of adenosine 5'-triphosphate (ATP) and ATP analogs, P/sub 2y/ purinoceptor agonists, on growth of normal mouse mammary epithelial cells (NMuMG) were examined. Cells were plated onto 24 well plates in DMEM supplemented with 10 % fetal calf serum. After serum starvation for 24 hours, ATP, P/sub 2y/ purinoceptor agonists (AdoPP[NH]P, ATP-α-S, ATP-γ-S, β, γ-me-ATP and 2me-S-ATP), P/sub 2u/ purinoceptor agonist (UTP) and P/sub 2y/ purinoceptor antagonists (Reactive Blue 2, more selective to P/sub 2y/ receptor than PPADS; PPADS) were added. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA (1 hour pulse with 1 μ Ci/ml, 18~19 hours after treatment). ATP, Adopp[NH]P, ATP-α-S or ATP-γ-S, significantly increased DNA synthesis at 1, 10 and 100 μM concentrations with dose-dependency (P<0.05), and the maximum responses of ATP and ATP analogs were shown at 100 μM concentration (P<0.05). The potency order of DNA synthesis was ATP≥ATP- γ -S>Adopp [NH]P>ATP-α-S. β, γ -me-ATP, 2me-S-ATP and UTP did not increase DNA synthesis. In autoradiographic analysis of percentage of S-phase cells, similar results were observed to those of DNA synthesis. Addition of 1, 10 or 100 μM Reactive Blue 2 or PPADS significantly decreased ATP (100 μM)-induced DNA synthesis, however, PPADS was less effective than Reactive Blue 2. In Elvax 40P implant experiment, ATP directly stimulated mammary endbud growth in situ suggesting the physiological regulator of ATP in mammary growth. ATP 100 μM rapidly increased MAPK activity, reaching a maximum at 5 min and then gradually decreasing to the base level in 30 min. ATP analogs, Adopp[NH]P and ATP-γ-S also increased MAPK activity, however, β, γ-me-ATP and 2me-S-ATP did not. The inhibitor of the upstream MAPK kinase (MEK), PD 98059 (25 μM), effectively reduced ATP (100 μM) or EGF(10 ng/ml, as positive control)-induced MAPK activity and DNA synthesis (P<0.05). These results indicate that ATP-induced DNA synthesis was prevented from the direct inhibition of MAPK kinase pathway. Overall results support the hypothesis that the stimulatory effects of normal mouse mammary epithelial growth by addition of ATP or ATP analogs are mediated through mammary tissue specific P/sub 2y/ purinoceptor subtype, and MAPK activation is necessary for the ATP-induced cell growth.

The Effect of Epidermal Growth Factor on Cell Proliferation and Its Related Signal Pathways in Pig Hepatocytes

  • Kim Dong-Il;Han Ho-Jae;Park Soo-Hyun
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.249-254
    • /
    • 2006
  • It has been reported that liver is a very important organ to xenotransplantation. Pig is known to be a most suitable species in transplantation of human organs. However, the physiological function of pig hepatocytes is not clear elucidated. Epidermal growth factor (EGF) is known to be a mitogen in various cell systems. Thus, we examined the effect of EGF on cell proliferation and its related signal cascades in primary cultured pig hepatocytes. EGF stimulates cell proliferation in a dose (>1ng/ml) dependent manner. EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by AG 1478 ($10^{-6}M$, an EGF receptor antagonist) genistein and herbymycin A (tyrosine kinase inhibitors, $10^{-6}M$), suggesting the role of activation and tyrosine phosphorylation of EGF receptor. In addition, EGF-induced increase of $[^3H]-thymidine$ incorporation was prevented by neomycin $(10^{-4}M)$, U73122 $(10^{-5}M)$ (phospholipase C [PLC] inhibitors), staurosporine ($(10^{-8}M)$, or bisindolylmaleimide I $(10^{-6}M)$ (protein kinase C [PKC] inhibitors), suggesting the role of PLC and PKC. Moreover, EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by PD 98059 (a p44/42 mitogen activated protein kinase [MAPK] inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor). EGF increased the translocation of PKC from cytosol to membrane fraction and activated p42/44 MAPK, p38 MAPK and JNK. In conclusion, EGF stimulates cell proliferation via PKC and MAPK in cultured pig hepatocytes.

  • PDF

IL-1Ra Elaboration by Colchicine Stimulation in Normal Human Bronchial Epithelial Cells (정상 인체 기관지 상피세포에서 콜히친의 Interleukin-1 수용체 길항제 생성자극)

  • Lee, Jae Hyung;Kim, Sang Heon;Kim, Tae Hyung;Sohn, Jang Won;Yoon, Ho Joo;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.145-153
    • /
    • 2007
  • Background: Asthma is a syndrome that is characterized by a variable degree of airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Colchicine is an inexpensive and safe medication with unique anti-inflammatory properties. IL-1Ra (Interleukin-1 receptor antagonist) mediates the anti-inflammatory effect in human inflammatory diseases, including asthma. This study examined whether IL-1Ra mediates the anti-inflammatory effect of colchicine in normal human bronchial epithelial cells (NHBE), RAW 264.7 cells (murine macrophage cell line), and a mouse lung. Methods: NHBE, RAW 264.7 cells and BALB/c mice were stimulated with colchicine, and the increase in the IL-1Ra level was estimated by ELISA, Western analysis and RT-PCR analysis. Results: Colchicine stimulated NHBE and RAW 264.7 cells to release IL-1Ra into the supernatant in a dose-and time-dependent manner. The major isoform of IL-1Ra in NHBE and RAW 264.7 cells is type I icIL-1Ra, and sIL-1Ra, respectively. IL-1Ra up-regulation was blocked by PD98059, a specific inhibitor in MAPK pathways. Colchicine also stimulated the secretion of IL-1Ra into the bronchoalveolar lavage (BAL) fluid of BALB/c mouse. Conclusion: Colchicine stimulates an increase in the IL-1Ra level both in vivo and in vitro, and might have an anti-inflammatory effect.

Upregulation of Lipopolysaccharide-Induced Interleukin-10 by Prostaglandin $A_1$ in Mouse Peritoneal Macrophages

  • Kim, Hyo-Young;Kim, Jae-Ryong;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1170-1178
    • /
    • 2008
  • The cyclopentenone prostaglandins (cyPGs) prostaglandin $A_1$ ($PGA_1$) and 15-deoxy-${\Delta}^{12,14}$-prostaglandin $J_2$ (15d-$PGJ_2$) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of $PGA_1$ in lipopolysaccharide (LPS)-induced expression of inter leu kin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-$PGJ_2$ inhibited expression of LPS-induced IL-10, whereas $PGA_1$ increased LPS-induced IL-10 expression. This synergistic effect of $PGA_1$ on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous $PGA_1$ and LPS treatment ($PGA_1$/LPS), and did not require new protein synthesis. The synergistic effect of $PGA_1$ was inhibited by GW9662, a specific peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ antagonist, and Bay-11-7082, a NF-${\kappa}B$ inhibitor. The extracellular signal-regulated kinases (ERK) inhibitor PD98059 increased the expression of $PGA_1$/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, $PGA_1$ inhibited LPS-induced ERK phosphorylation. The synergistic effect of $PGA_1$ on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and $PGA_1$ increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun $NH_2$-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of $PGA_1$ on LPS-induced IL-10 expression is NF-${\kappa}B$-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/JNK signaling pathways, and also associated with the $PPAR{\gamma}$ pathway. Our data may provide more insight into the diverse mechanisms of $PGA_1$ effects on the expression of cytokine genes.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

NOX4/Src regulates ANP secretion through activating ERK1/2 and Akt/GATA4 signaling in beating rat hypoxic atria

  • Wu, Cheng-zhe;Li, Xiang;Hong, Lan;Han, Zhuo-na;Liu, Ying;Wei, Cheng-xi;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.159-166
    • /
    • 2021
  • Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 μM) and BQ788 (0.3 μM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 μM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 μM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxia-activated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 μM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 μM) and LY294002 (10.0 μM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

Cryptotanshinone inhibits TNF-α-induced LOX-1 expression by suppressing reactive oxygen species (ROS) formation in endothelial cells

  • Ran, Xiaoli;Zhao, Wenwen;Li, Wenping;Shi, Jingshan;Chen, Xiuping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.347-355
    • /
    • 2016
  • Cryptotanshinone (CPT) is a natural compound isolated from traditional Chinese medicine Salvia miltiorrhiza Bunge. In the present study, the regulatory effect and potential mechanisms of CPT on tumor necrosis factor alpha ($TNF-{\alpha}$) induced lectin-like receptor for oxidized low density lipoprotein (LOX-1) were investigated. Human umbilical vein endothelial cells (HUVECs) were cultured and the effect of $TNF-{\alpha}$ on LOX-1 expression at mRNA and protein levels was determined by Real-time PCR and Western blotting respectively. The formation of intracellular ROS was determined with fluorescence probe $CM-DCFH_2-DA$. The endothelial ox-LDL uptake was evaluated with DiI-ox-LDL. The effect of CPT on LOX-1 expression was also evaluated with SD rats. $TNF-{\alpha}$ induced LOX-1 expression in a dose- and time- dependent manner in endothelial cells. $TNF-{\alpha}$ induced ROS formation, phosphorylation of $NF-{\kappa}B$ p65 and ERK, and LOX-1 expression, which were suppressed by rotenone, DPI, NAC, and CPT. $NF-{\kappa}B$ inhibitor BAY11-7082 and ERK inhibitor PD98059 inhibited $TNF-{\alpha}-induced$ LOX-1 expression. CPT and NAC suppressed $TNF-{\alpha}-induced$ LOX-1 expression and phosphorylation of $NF-{\kappa}B$ p65 and ERK in rat aorta. These data suggested that $TNF-{\alpha}$ induced LOX-1 expression via ROS activated $NF-{\kappa}B/ERK$ pathway, which could be inhibited by CPT. This study provides new insights for the anti-atherosclerotic effect of CPT.