• Title/Summary/Keyword: PCR.

Search Result 11,743, Processing Time 0.04 seconds

Development of Ultra-Rapid Multiplex PCR Detection against 6 Major Pathogens in Honeybee (꿀벌 6종 주요 병원체에 대한 초고속 다중 PCR 검출법의 개발)

  • Lim, Su-Jin;Kim, Jung-Min;Lee, Chil-Woo;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.32 no.1
    • /
    • pp.27-39
    • /
    • 2017
  • PCR-chip-based ultra-rapid multiplex PCRs for detection of six major infectious pathogens in honeybee were developed. The 6 kinds of major infectious pathogens in honeybee included Paenibacillus larvae causing American Foulbrood, Melissococcus plutonius causing European Foulbrood as bacteria, Ascosphaera apis (Chalkbrood), Aspergillus flavus (Stonebrood), Nosema apis and Nosema ceranae (Nosemosis) as fungi. The developed PCR-chip-based ultra-rapid multiplex PCR showed successful amplification for all six major pathogens in the presence of more than $10^3$ molecules. The time for confirming amplification (Threshold cycles; Ct-time) was about 7 minutes for two species, and about 9 minutes for four species. Total 40 cycles of PCR took 11 minutes 42 seconds and time for melting point analysis was 1 minute 15 seconds. Total time for whole PCR detection was estimated 12 minutes 57 seconds (40 cycles of PCR and melting point analysis). PCR-chip based ultra-rapid multiplex PCR using standard DNA substrates showed close to 100% accuracy and no false-amplification was found with honeybee genomic DNA. Ultra-rapid multiplex PCR is expected to be a fast and efficient pathogen detection method not only in the laboratory but also in the apiary field.

Detection of Marine Birnavirus (MBV) from Rockfish Sebastes schlegeli Using Reverse Transcription and Nested PCR

  • Joh, Seong-Joon;Kim, Doo-Won;Kim, Jeong-Ho;Heo, Gang-Joon
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.260-264
    • /
    • 2000
  • Reverse transcription (RT)-PCR and nested PCR methods (2-step PCR) were tested for their ability to detect marine birnavirus (MBV) in cultured rockfish, Sebastes schlegeli. One set of primers for RT-PCR was designed, based on a gene of infectious pancreatic necrosis virus (IPNV), and another set of primers for nested PCR was designed based on the VP2/NS junction region of MBV. This 2-step PCR method was specific for MBV and sensitivity was heightened when nested PCR was combined to RT-PCR. This 2-step PCR method was useful for detecting MBV not only in diseased fish, but also in asymptomatic fish. These results indicate that this 2-step PCR method is useful for detecting MBV in rockfish.

  • PDF

Usefulness of PCR to Mycobacterium Tuberculous and Nontuberculous Mycobacteria from Paraffin-embedded Tissues

  • Choi, Yeon-Il;Kim, Hye-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • The purpose of this study was to evaluate the clinical utility of TB/NTM PCR by comparing the results of TB PCR to detect Mycobacterium tuberculous (MTB) and nontuberculous mycobacteria (NTM) from paraffin-embedded tissue specimens. A total of 60 cases were tested using TB PCR and TB/NTM PCR. The MTB and NTM rate of TB/NTM PCR was 84.2% (16/19), 10.5% (2/19) in TB positive of TB PCR. The NTM rate of TB/NTM PCR was 29.3% (12/41) in TB negative of TB PCR. Fourteen different species of NTM were identified, the common isolate was M. gordonae (21.4%), M. avium (14.3%), M. ulcerans (7.1%), M. interjectum (7.1%), M. gilvum (7.1%), M. fortuitum (7.1%), M. mucogenicum (7.1%). The rare species identified were M. farcinogenes (7.1%), M. tokaiense (7.1%). Therefore, TB/NTM PCR is useful to differentiate MTB and NTM from paraffin-embedded tissue specimens and it is more effective in detecting NTM with TB PCR.

Development and Application of Reverse Transcription Nanoplate-Based Digital PCR Assay for Sensitive and Accurate Detection of Rice Black-Streaked Dwarf Virus in Cereal Crops

  • Hyo-Jeong Lee;Hae-Jun Kim;Sang-Min Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.408-413
    • /
    • 2024
  • The emergence of rice black-streaked dwarf virus (RBSDV) poses a significant threat to global cereal crop cultivation, necessitating the urgent development of reliable detection and quantification techniques. This study introduces a reliable approach for the precise and sensitive quantification of the RBSDV in cereal crop samples, employing a reverse transcription digital polymerase chain reaction (RT-dPCR) assay. We assessed the specificity and sensitivity of the RT-dPCR assay proposed for precise RBSDV detection and quantification. Our findings demonstrate that RT-dPCR was specific for detection of RBSDV, with no cross-reactivity observed with other viruses infecting cereal crops. The RT-dPCR sensitivity was over 10 times that of RT-quantitative PCR (RT-qPCR). The detection limit of RT-dPCR was 0.096 copies/㎕. In addition, evaluation of RT-dPCR assay with field samples was conducted on 60 different cereal crop samples revealed that RT-dPCR (45/60) exhibited superior accuracy compared with RT-qPCR (23/60). In this study, we present a specific and accurate RT-dPCR assay for the detection and quantification of RBSDV.

Ultra-Rapid Real-Time PCR for the Detection of Human Immunodeficiency Virus (HIV) (Ultra Rapid Real-Time PCR에 의한 Human Immunodeficiency Virus (HIV)의 신속진단법)

  • Lee, Dong-Woo;Kim, Eul-Hwan;Yoo, Mi-Sun;Han, Sang-Hoon;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.91-99
    • /
    • 2007
  • For the detection of Human Immunodeficiency Virus (HIV), multiple and ultra-rapid real-time PCR methods were developed. The target DNA sequences were deduced from HIV-1 specific 495bp partial env gene (gi_1184090) and from HIV-2 specific 294 bp partial env gene (gi_1332355), and were synthesized by using PCR-based gene synthesis on the reason of safety. Ultra-rapid real-time PCR was performed by $Genspector^{TM}$ using microchip-based, $1\;{\mu}l$ of reaction volume with extremely short time in each 3 step in PCR. The detection including DNA-amplification and melting temperature analysis was completed inner 15 minutes. The HIV-1 specific 117 bp-long and HIV-2 specific 119 bp-long PCR products were successfully amplified from minimum of template,2.3 molecules of each env gene. This kind of real-time PCR was designated as ultra-rapid real-time PCR in this study and it could be applied not only an alternative detection method against HIV, but also other pathogens using PCR-based detection.

Quantitative analysis of oral disease-causing bacteria in saliva among bacterial culture, SYBRgreen qPCR and MRT-PCR method (타액내 구강질환 원인 균의 세균배양법, SYBR green qPCR법, MRT-PCR법 간의 정량분석)

  • Park, Yong-Duk;Oh, Hye-Young;Park, Bok-Ri;Cho, Ara;Kim, Dong-Kie;Jang, Jong-Hwa
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.319-330
    • /
    • 2017
  • Objectives: The purpose of this study was to compare SYBR Green qPCR, TaqMan, and bacterial selective medium cultures for accurate quantitative analysis of oral microorganisms. Methods: The SYBR Green method is widely used to analyze the total amount of oral microorganisms in oral saliva. However, in this study, MTR-PCR method based on TaqMan method was performed using newly developed primers and probes. In addition, it was designed to confirm the detection agreement of bacteria among bacteria detection method. Results: As a result of MRT-PCR and SYBR Green qPCR analysis, more than 40 times (0.9-362.9 times) bacterium was detected by MRT-PCR. In addition, more bacteria were detected in saliva in the order of MRT-PCR, SYBR Green qPCR, and bacterium culture, and the results of MRB-PCR and SYBR Green qPCR showed the highest agreement. The agreement between the three methods for detecting P. intermedia was similar between 71.4 and 88.6%, but the agreement between MRT-PCR and SYBR Green qPCR was 80% for S. mutans. Among them, the number of total bacteria, P. intermedia and S. mutans bacteria in saliva was higher than that of SYBR Green qPCR method, and bacterium culture method by MRT-PCR method. P. intermedia and S. mutans in saliva were detected by MRT-PCR and MRT-PCR in 88.6% of cases, followed by the SYBR Green qPCR method (80.0%). Conclusions: The SYBR Green qPCR method is the same molecular biology method, but it can not analyze the germs at the same time. Bacterial culturing takes a lot of time if there is no selective culture medium. Therefore, the MRT-PCR method using newly developed primers and probes is considered to be the best method.

Polymerase Chain Reaction for the Rapid Detection of Listeria monocytogenes in Foods Using HlyA Gene Primers (HlyA유전자 Primer를 이용한 PCR에 의한 식품으로부터 Listeria monocytogenes의 신속 검출 방법)

  • 최영춘;박부길;오덕환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1016-1024
    • /
    • 2000
  • The study was conducted to develop a rapid method for the detection of Listeria monocytogenes in foods via polymerase chain reaction (PCR) technique using hemolysin gene (hlyA) primers. Specificity and sensitivity of PCR, optimal conditions for PCR and application of hlyA gene primers for the detection of L. monocytogenes from milk and beef were investigeted. Each of the 20 L. monocytogenes strains gave a single 713 bp band, but other Listeria sup. and other bacteria did not show any bands. As few as 1 pg of L. monocytogenes DNA or 2.4$\times$10$^4$L. monocytogenes cells could be detected with hlyA gene primers. PCR product was most improved at 20~30 cycle in terms of removal of tailing and sensitivity. Also, the sensitivity was significantly improved by the further 10~15 cycle after 20 cycle PCR amplication. Milk (10 mL) and beef (10 g) samples were inoculated with L. monocytogenes at the concentrations ranging from 0 to 10$^{7}$ CFU/mL or g to determine the best sensitivity of PCR for the rapid detection of L. monocytogenes. PCR assay could detect 2 cells in milk with repeating PCR amplication and 2.6$\times$10$^2$cells in beef sample after 24 hr enrichment growth at 35$^{\circ}C$ in LEB.

  • PDF

Development of Nested-PCR Assay to Detect Acidovorax citrulli, a Causal Agent of Bacterial Fruit Blotch at Cucurbitaceae (박과 작물에 과일썩음병을 일으키는 Acidovorax citrulli 검출을 위한 nested-PCR 검사법 개발)

  • Kim, Young-Tak;Park, Kyoung-Soo;Kim, Hye-Seong;Lee, Hyok-In;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.74-81
    • /
    • 2015
  • The specific and sensitive nested-PCR method to detect Acidovorax citrulli, a causal agent of bacterial fruit blotch on cucurbitaceae, was developed. PCR primers were designed from the draft genome sequence which was obtained with the Next Generation Sequencing of A. citrulli KACC10651, and the nested-PCR primer set (Ac-ORF 21F/Ac-ORF 21R) were selected by checking of specificity to A. citrulli with PCR assays. The selected nested-PCR primer amplified the 140 bp DNA only from A. citrulli strains, and detection sensitivity of the nested PCR increased 10,000 times of $1^{st}$ PCR detection limit (10 ng genomic DNA/PCR). The nested PCR detected A. citrulli from the all samples of seed surface wash (external seed detection) of the artificially inoculated watermelon seeds with $10^1cfu/ml$ and above population of A. citrulli while the nested PCR could not detected A. citrulli from the mashed seed suspension (internal seed detection) of the all artificially inoculated watermelon seeds. When the naturally infested watermelon seeds (10% seed infested rate with grow-out test) used, the nested PCR detected A. citrulli from 2 seed samples out of 10 replication samples externally and 5 seed samples out of 10 replication samples internally. We believe that the nested-PCR developed in this study will be useful method to detect A. citrulli from the Cucurbitaceae seeds.

Application of Reverse Transcription Droplet Digital PCR for Detection and Quantification of Tomato Spotted Wilt Virus (Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량)

  • Lee, Hyo-Jeong;Park, Ki Beom;Han, Yeon Soo;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.120-127
    • /
    • 2021
  • Plant viruses cause significant yield losses, continuously compromising crop production and thus representing a serious threat to global food security. Tomato spotted wilt virus (TSWV) is the most harmful plant virus that mainly infects horticultural crops and has a wide host range. Reverse-transcription quantitative real-time PCR (RT-qPCR) has been widely used for detecting TSWV with high sensitivity, but its application is limited owing to the lack of standardization. Therefore, in this study, a sensitive and accurate reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) method was established for TSWV detection. Additionally, we compared the sensitivities of RT-qPCR and RT-ddPCR for TSWV detection. Specificity analysis of RT-ddPCR for TSWV showed no amplification for main pepper viruses and negative control. TSWV transcripts levels measured by RT-ddPCR and RT-qPCR showed a high degree of linearity; however, the former yielded results that were at least 10-fold more sensitive and detected lower TSWV copy numbers than the latter. Collectively, our findings show that RT-ddPCR provides improved analytical sensitivity and specificity for TSWV detection, making it suitable for identifying low TSWV concentrations in field samples.

Rapid and Sensitive Detection of Infectious Pancreatic Necrosis Virus (IPNV) by Revers Transcription-Polymerase Chain Reaction (RT-PCR) (PT-PCR 법에 의한 Infectious Pancreatic Necrosis Virus의 조기진단)

  • 강호성;공희정;구현나;박정우;손상규;박명애;김한도
    • Journal of Aquaculture
    • /
    • v.10 no.2
    • /
    • pp.171-178
    • /
    • 1997
  • Infectious pancreatic necrosis virus (IPNY) is an economically important fish pathogen since it causes the high-mortality disease in early stage of hatchery-reared fishes. In order to develop a rapid, sensitive and highly specific detection method for IPNV, reverse transcription-polymerase chain reaction (RT-PCR) was carried out using the oligonucleotide primers selected from the sequence of VP2, a major capsid polypertide of IPNV. As little as 40ng of purified IPNV dsRNA was detected by RT-PCR amplification, but no amplification products were obtained when nucleic acid genomes from other fish pathogens such as IHNV were used as RT-PCR templates. in situ RT-PCR methods are useful for the rapid and sensitive identification of IPNV.

  • PDF