• Title/Summary/Keyword: PCR Device

Search Result 29, Processing Time 0.026 seconds

Design and Implementation of Firmware for Low-cost Small PCR Devices (저가의 소형 PCR 장치를 위한 펌웨어 설계 및 구현)

  • Lee, Wan Yeon;Kim, Jong Dae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we design and implement a firmware for low-cost small PCR devices. To minimize machine code size, the proposed firmware controls real-time tasks simultaneously only with support of the hardware interrupt, but without support of the operating system program. The proposed firmware has the host-local structure in which the firmware receives operation commands from PC and sends operation results to PC through usb communication. We implement a low-cost small PCR device with the proposed firmware loaded on microchip PIC18F4550 chip, and verify that the implemented PCR device significantly reduces cost and volume size of existing commercial PCR devices with a similar performance.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

Thermal Cycling Control System Design for Polymerase Chain Reaction(PCR) Machine (중합효소연쇄반응 기기의 온도 사이클링 제어시스템 설계)

  • Kim Jong-Hae;Cho Yong-Seuk;Oh Do-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.419-424
    • /
    • 2006
  • In this study, a thermal control system which applied a Peltier device for the polymerase chain reaction(PCR) machine is to be designed. Here in order for it to easily follow the characteristics of the thermal cycle existing for gene amplification of the PCR sample, a PCR control board utilizing a thermal sensor, a Peltier, and a 8 bit microprocessor is made up. Especially a fuzzy type PD control algorithm is applied periodically in time response, and control system is implemented. For that matter, the characteristic data of subject system is obtained and analysed to begin with. Based on this analysed data, the proposed control algorithm is applied and an evaluation of the performance of the whole system take place through the PC.

Improvement of PCR Preprocessing Efficiency through PEO-controlled Synthesis of Silica Nanofibers (PCR 전처리 효율 향상을 위한 PEO 제어 실리카 나노섬유 제작)

  • Seung-Min Lee;Hyeon-Ho Choi;Kwang-Ho Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.465-475
    • /
    • 2023
  • In this study, we demonstrated a silica nanofibrous membrane based on the electrospinning process and evaluated its DNA isolation and purification performance in PCR pretreatment. Generally, silica membranes made of non-woven fabric are used for PCR pretreatment, but this study aimed to improve the efficiency of the pretreatment process by developing a nanofiber-type silica membrane with high specific surface area and porosity. In order to manufacture a nanofiber-shaped silica film while maintaining the original physical properties of silica, nanofiber membranes produced by adding various concentrations of PEO (5 wt%, 8 wt%, and 10 wt%) to silica prepared by the sol-gel method were compared. In terms of nanofiber membrane production, the higher the PEO concentration, the more effective it was in producing nanofiber membranes. The produced silica nanofiber membrane was inserted to a pretreatment device used in commercial PCR equipment, and the pretreatment performance was compared and verified using Salmonella bacteria. When Salmonella was used, samples containing 5 wt% PEO showed superior PCR efficiency compared to samples containing 8 wt% and 10 wt% PEO. These results show that adding 5 wt% of PEO can effectively improve DNA purification and separation by producing a nanofiber-shaped silica film while maintaining the physical properties of silica. We expect that this study will contribute to the development of effective PCR pretreatment technology essential for various molecular biology applications.

Clinical Usefulness of LabChip Real-time PCR using Lab-On-a-Chip Technology for Diagnosing Malaria

  • Kim, Jeeyong;Lim, Da Hye;Mihn, Do-CiC;Nam, Jeonghun;Jang, Woong Sik;Lim, Chae Seung
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • As malaria remains a major health problem worldwide, various diagnostic tests have been developed, including microscopy-based and rapid diagnostic tests. LabChip real-time PCR (LRP) is a small and portable device used to diagnose malaria using lab-on-a-chip technology. This study aimed to evaluate the diagnostic performance of LRP for detecting malaria parasites. Two hundred thirteen patients and 150 healthy individuals were enrolled from May 2009 to October 2015. A diagnostic detectability of LRP for malaria parasites was compared to that of conventional RT-PCR. Sensitivity of LRP for Plasmodium vivax, P. falciparum, P. malariae, and P. ovale was 95.5%, 96.0%, 100%, and 100%, respectively. Specificity of LRP for P. vivax, P. falciparum, P. malariae, and P. ovale was 100%, 99.3%, 100%, and 100%, respectively. Cohen's Kappa coefficients between LRP and CFX96 for detecting P. vivax, P. falciparum, P. malariae, and P. ovale were 0.96, 0.98, 1.00, and 1.00, respectively. Significant difference was not observed between the results of LRP and conventional RT-PCR and microscopic examination. A time required to amplify DNAs using LRP and conventional RT-PCR was 27 min and 86 min, respectively. LRP amplified DNAs 2 times more fast than conventional RT-PCR due to the faster heat transfer. Therefore, LRP could be employed as a useful tool for detecting malaria parasites in clinical laboratories.

An Inexpensive System for Rapid and Accurate On-site Detection of Garlic-Infected Viruses by Agarose Gel Electrophoresis Followed by Array Assay

  • Kazuyoshi Furuta;Shusuke Kawakubo;Jun Sasaki;Chikara Masuta
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • Garlic can be infected by a variety of viruses, but mixed infections with leek yellow stripe virus, onion yellow dwarf virus, and allexiviruses are the most damaging, so an easy, inexpensive on-site method to simultaneously detect at least these three viruses with a certain degree of accuracy is needed to produce virus-free plants. The most common laboratory method for diagnosis is multiplex reverse transcription polymerase chain reaction (RT-PCR). However, allexiviruses are highly diverse even within the same species, making it difficult to design universal PCR primers for all garlic-growing regions in the world. To solve this problem, we developed an inexpensive on-site detection system for the three garlic viruses that uses a commercial mobile PCR device and a compact electrophoresis system with a blue light. In this system, virus-specific bands generated by electrophoresis can be identified by eye in real time because the PCR products are labeled with a fluorescent dye, FITC. Because the electrophoresis step might eventually be replaced with a lateral flow assay (LFA), we also demonstrated that a uniplex LFA can be used for virus detection; however, multiplexing and a significant cost reduction are needed before it can be used for on-site detection.

Study on Microbiochip for Buccal Cell Lysis and DNA Purification (상피세포 시료 전처리용 마이크로바이오칩에 관한 연구)

  • Ha, Seung-Mo;Cho, Woong;Ahn, Yoo-Min;Hwang, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1785-1791
    • /
    • 2010
  • This paper describes a separable microfluidic device fabricated with PDMS (polydimethylsiloxane) and glass. The device is used for sample preparation involving cell lysis and the DNA purification process. The cell lysis was performed for 2 min at $80^{\circ}C$ in a serpentine-type microreactor ($20 {\mu}l$) using a Au microheater that was integrated with a thermal microsensor on a glass substrate. The DNA that was mixed with other residual products during the cell lysis process was then filtered through a new filtration system composed of microbeads (diameter: $50 {\mu}m$) and PDMS pillars. Since the entire process (sample loading, cell lysis reaction, DNA purification, and sample extraction) was performed within 5 min in a microchip, we could reduce the sample preparation time in comparison with that for the conventional methods used in biochemistry laboratories. Finally, we verified the performance of the sample preparation chip by conducting PCR (polymerase chain reaction) analysis of the chip product.

Slipchip Device Development in Molecular Diagnostics

  • Qingtian Yin;Huiwen Bai;Ruijie Li;Youngung Seok
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.63-71
    • /
    • 2024
  • Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device's versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.

A Study on plasma etching for PCR manufacturing (PCR 장치를 위한 플라즈마 식각에 관한 연구)

  • Kim, Jinhyun;Ryoo, Kunkul;Lee, Jongkwon;Lee, Yoonbae;Lee, Miyoung
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.101-105
    • /
    • 2003
  • Plasma etching technology has been developed since it is recognized that silicon etching is very crucial in MEMS(Micro Electro Mechanical System) technology. In this study ICP(Inductive Coupled Plasma) technology was used as a new plasma etching to increase ion density without increasing ion energy, and to maintain the etching directions. This plasma etching can be used for many MEMS applications, but it has been used for PCR(Polymerase Chain Reaction) device fabrication. Platen power, Coil power and process pressure were parameters for observing the etching rate changes. Conclusively Platen power 12W, Coil power 500W, etchng/passivation cycle 6/7sec gives the etching rate of $1.2{\mu}m/min$ and sidewall profile of $90{\pm}0.7^{\circ}$, exclusively. It was concluded from this study that it was possible to minimize the environmental effect by optimizing the etching process using SF6 gas.

  • PDF

Apple Virus Diagnosis Using Simplified RNA Extraction Method (사과바이러스 간편 진단을 위한 RNA추출법 개선)

  • Shin, Dong-Il;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.43 no.6
    • /
    • pp.105-109
    • /
    • 2009
  • Kyungsan nursery complex which has a vast area for the production of various species of fruit tree stocks is in a high demand of virus-free saplings. Apple tree stocks, the most important products, urgently need more rapid and reliable viral diagnosis. In this study, a bead beater was tested because of convenience in dealing with large number of samples. Also, industrial glass bead abrasive (0.4 mm in diameter) at very low cost was used in a disposable way. For bead beater-aided RNA extraction from apple stem tissues, the guanidine thiocyanate method was confirmed to be very reliable. Silca membrane filter tube in connection to vacuum filtering device was strongly suggested for simplifying RNA capture and washing steps. Apple virus detection was confirmed by RT-PCR.