• Title/Summary/Keyword: PCR (Polymerase Chain Reaction)

Search Result 2,809, Processing Time 0.03 seconds

Effect of Silencing subolesin and enolase impairs gene expression, engorgement and reproduction in Haemaphysalis longicornis (Acari: Ixodidae) ticks

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.43.1-43.13
    • /
    • 2024
  • Importance: Haemaphysalis longicornis is an obligate blood-sucking ectoparasite that has gained attention due its role of transmitting medically and veterinary significant pathogens and it is the most common tick species in Republic of Korea. The preferred strategy for controlling ticks is a multi-antigenic vaccination. Testing the efficiency of a combination antigen is a promising method for creating a tick vaccine. Objective: The aim of the current research was to analyze the role of subolesin and enolase in feeding and reproduction of H. longicornis by gene silencing. Methods: In this study, we used RNA interference to silence salivary enolase and subolesin in H. longicornis. Unfed female ticks injected with double-stranded RNA targeting subolesin and enolase were attached and fed normally on the rabbit's ear. Real-time polymerase chain reaction was used to confirm the extent of knockdown. Results: Ticks in the subolesin or enolase dsRNA groups showed knockdown rates of 80% and 60% respectively. Ticks in the combination dsRNA (subolesin and enolase) group showed an 80% knockdown. Knockdown of subolesin and enolase resulted in significant depletion in feeding, blood engorgement weight, attachment rate, and egg laying. Silencing of both resulted in a significant (p < 0.05) reduction in tick engorgement, egg laying, egg hatching (15%), and reproduction. Conclusions and Relevance: Our results suggest that subolesin and enolase are an exciting target for future tick control strategies.

Biological and Molecular Characterization of a Korean Isolate of Clover Yellow Vein Virus Infecting Canavalia ensiformis

  • Bong-Geun Oh;Ho-Jong Ju;Jong-Sang Chung;Ju-Yeon Yoon
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.157-164
    • /
    • 2024
  • Jack bean (Canavalia ensiformis) is one of healthy products for fermented or functional food in Korea and is widely distributed and cultivated worldwide. During August 2022, Jack bean plants showing symptoms of yellow flecks, chlorosis, necrotic spots and mosaic were observed in Jangheung-gun, South Korea. By transmission electron microscopy, flexuous filamentous virus particles of approximately 750×13 nm in size were observed in the symptomatic leaf samples. The infection of a Korean isolate of clover yellow vein virus (ClYVV-Ce-JH) was confirmed using double antibody sandwich enzyme-linked sorbent assay, reverse transcription polymerase chain reaction and high-throughput sequencing. The complete genome sequence of ClYVV-Ce-JH consists of 9,549 nucleotides (nt) excluding the poly (A) tail and encodes 3,072 amino acids (aa), with an AUG start and UAG stop codon, containing one open reading frame that is typical of a potyvirus polyprotein. The polyprotein of ClYVV-Ce-JH was divided into ten proteins and each protein's cleavage sites were determined. The coat protein (CP) and polyprotein of ClYVV-Ce-JH were compared at the nt and aa levels with those of the previously reported 14 ClYVV isolates. ClYVV-Ce-JH shared 92.62% to 99.63% and 93.39% to 98.05% at the CP and polyprotein homology. To our knowledge, this is the first report of a Korean isolate of ClYVV from Jack bean plants and the complete genome sequence of a ClYVV Jack bean isolate in the world.

Downregulation of the Expression of Steroidogenic Acute Regulatory Protein and Aromatase in Steroidogenic KGN Human Granulosa Cells after Exposure to Bisphenol A

  • Ji-Eun Park;Seung Gee Lee;Seung-Jin Lee;Wook-Joon Yu;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.185-193
    • /
    • 2023
  • Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 μM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.

Methanol extract of Elsholtzia fruticosa promotes 3T3-L1 preadipocyte differentiation

  • Deumaya Shrestha;Eunbin Kim;Krishna K. Shrestha;Sung-Suk Suh;Sung-Hak Kim;Jong Bae Seo
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.204-218
    • /
    • 2024
  • Elsholtzia fruticosa (EF) is present in tropical regions throughout South Asian countries as well as the Himalayas. Although it has been used as a traditional medicine to treat digestive, respiratory, and inflammatory issues, its effect on preadipocyte differentiation is unknown. In this study, we examined the effects of a methanol extract prepared from EF on the differentiation of 3T3-L1 preadipocytes. Cell differentiation was assessed by microscopic observation and oil-red O staining. The expression of adipogenic and lipogenic genes, including PPARγ and C/EBPα, was measured by western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), to provide insight into adipogenesis and lipogenesis mechanisms. The results indicated that EF promotes the differentiation of 3T3-L1 preadipocytes, with elevated lipid accumulation occurring in a concentration-dependent manner without apparent cytotoxicity. EF enhances the expression of adipogenic and lipogenic genes, including PPARγ, FABP4, adiponectin, and FAS, at the mRNA and protein levels. The effect of EF was more pronounced during the early and middle stages of 3T3-L1 cell differentiation. Treatment with EF decreased C/EBP homologous protein (CHOP) mRNA and protein levels, while increasing C/EBPα and PPARγ expression. Treatment with EF resulted in the upregulation of cyclin E and CDK2 gene expression within 24 h, followed by a decrease at 48 h, demonstrating the early-stage impact of EF. A concomitant increase in cyclin-D1 levels was observed compared with untreated cells, indicating that EF modulates lipogenic and adipogenic genes through intricate mechanisms involving CHOP and cell cycle pathways. In summary, EF induces the differentiation of 3T3-L1 preadipocytes by increasing the expression of adipogenic and lipogenic genes, possibly through CHOP and cell cycle-dependent mechanisms.

Effects of bioflocs on immune responses of Fleshy shrimp, Fenneropenaeus chinensis postlarvae and adults as related to the different feeding abilities

  • Su-Kyoung Kim;Su Kyoung Kim;In-Kwon Jang;Je-Cheon Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.649-659
    • /
    • 2023
  • The present study compared the structure of mixilliped of Fenneropenaeus chinensis between the larval and adult stage and investigated the effect of the structural difference on the immunity of F. chinensis. A fourteen day and a one-month long culture trial were conducted each with postlarvae and adults of F. chinensis in the biofloc, mixed water (50% biofloc:50% clear seawater) and seawater control. Immune-related genes mRNA expressions of postlarvae was analysed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). And the analysis of adult stage immunity was carried out using phenoloxidase (PO) enzyme activation in haemocyte. In the postlarvae, the final body weights were 51.43 and 58.47 mg for the biofloc water and the control seawater, respectively. On the other hand, the final body weights of the adults were significantly different between biofloc water and seawater. The survival rate showed the opposite trend to the growth rate. Immune related genes mRNA expression levels in the postlarvae in the biofloc water were significantly lower than those in the seawater. While, the adult stage showed significantly higher PO enzyme activations in the biofloc water than in the seawater with the PO enzyme activation increasing proportionally to the biofloc concentration. This result is considerably explained by the observations of setal morphological structures of the third maxilliped: postlarvae have short serrulated setae that compose the small 'net' structure while adults had long and dense plumose setae. It is understood that the morphological difference of the maxilliped structure resulted in the different feeding abilities in the postlarvae and the adult F. chinensis to use bioflocs as food source.

Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4

  • Suleiman D Allison;Nur AdeelaYasid;Fairolniza Mohd Shariff; Nor'Aini Abdul Rahman
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.436-456
    • /
    • 2024
  • Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80℃. In addition, the enzyme showed a half-life of 15 h at 80℃, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.

Brain invasion of bovine coronavirus: molecular analysis of bovine coronavirus infection in calves with severe pneumonia and neurological signs

  • Semaha Gul Yilmaz;Ozge Aydin;Hasan Emre Tali;Gizem Karadag;Kivilcim Sonmez;Erhan Bayraktar;Aysun Yilmaz;Nuri Turan;Zihni Mutlu;Munir Iqbal;Jurgen A. Richt;Huseyin Yilmaz
    • Journal of Veterinary Science
    • /
    • v.25 no.4
    • /
    • pp.45.1-45.12
    • /
    • 2024
  • Importance: Although the role of bovine coronavirus (BCoV) in calf diarrhea and respiratory disorders is well documented, its contribution to neurological diseases is unclear. Objective: This study conducted virological investigations of calves showing diarrhea and respiratory and neurological signs. Methods: An outbreak of diarrhea, respiratory, and neurological disorders occurred among the 12 calves in July 2022 in Istanbul, Türkiye. Two of these calves exhibited neurological signs and died a few days after the appearance of symptoms. One of these calves was necropsied and analyzed using molecular and histopathological tests. Results: BCoV RNA was detected in the brain, lung, spleen, liver, and intestine of the calf that had neurological signs by real-time reverse transcription polymerase chain reaction. Immunostaining was also observed in the intestine and brain. A 622 bp S1 gene product was noted on gel electrophoresis only in the brain. Phylogenetic analysis indicated that the BCoV detected in this study had a high proximity to the BCoV strain GIb with 99.19% nucleotide sequence homology to the strains detected in Poland, Israel, Türkiye, and France. No distinct genetic lineages were observed when the brain isolate was compared with the respiratory and enteric strains reported to GenBank. In addition, the highest identity (98,72%) was obtained with the HECV 4408 and L07748 strains of human coronaviruses. Conclusions and Relevance: The strain detected in a calf brain belongs to the GIb-European lineage and shares high sequence homology with BCoV strains detected in Europe and Israel. In addition, the similarity between the human coronaviruses (4408 and L07748) raises questions about the zoonotic potential of the strains detected in this study.

Development of a nucleic acid detection method based on the CRISPR-Cas13 for point-of-care testing of bovine viral diarrhea virus-1b

  • Sungeun Hwang;Wonhee Lee;Yoonseok Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.781-791
    • /
    • 2024
  • Bovine viral diarrhea (BVD) is a single-stranded, positive-sense ribonucleic acid (RNA) virus belonging to the genus Pestivirus of the Flaviviridae family. BVD frequently causes economic losses to farmers. Among bovine viral diarrhea virus (BVDV) strains, BVDV-1b is predominant and widespread in Hanwoo calves. Reverse-transcription polymerase chain reaction (RT-PCR) is an essential method for diagnosing BVDV-1b and has become the gold standard for diagnosis in the Republic of Korea. However, this diagnostic method is time-consuming and requires expensive equipment. Therefore, Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems have been used for point-of-care (POC) testing of viruses. Developing a sensitive and specific method for POC testing of BVDV-1b would be advantageous for controlling the spread of infection. Thus, this study aimed to develop a novel nucleic acid detection method using the CRISPR-Cas13 system for POC testing of BVDV-1b. The sequence of the BVD virus was extracted from National Center for Biotechnology Information (NC_001461.1), and the 5' untranslated region, commonly used for detection, was selected. CRISPR RNA (crRNA) was designed using the Cas13 design program and optimized for the expression and purification of the LwCas13a protein. Madin Darby bovine kidney (MDBK) cells were infected with BVDV-1b, incubated, and the viral RNA was extracted. To enable POC viral detection, the compatibility of the CRISPR-Cas13 system was verified with a paper-based strip through collateral cleavage activity. Finally, a colorimetric assay was used to evaluate the detection of BVDV-1b by combining the previously obtained crRNA and Cas13a protein on a paper strip. In conclusion, the CRISPR-Cas13 system is highly sensitive, specific, and capable of nucleic acid detection, making it an optimal system for the early point-of-care testing of BVDV-1b.

Generation of Urothelial Cells from Mouse-Induced Pluripotent Stem Cells

  • Dongxu Zhang;Fengze Sun;Huibao Yao;Di Wang;Xingjun Bao;Jipeng Wang;Jitao Wu
    • International Journal of Stem Cells
    • /
    • v.15 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • Background and Objectives: The search for a suitable alternative for urethral defect is a challenge in the field of urethral tissue engineering. Induced pluripotent stem cells (iPSCs) possess multipotential for differentiation. The in vitro derivation of urothelial cells from mouse-iPSCs (miPSCs) has thus far not been reported. The purpose of this study was to establish an efficient and robust differentiation protocol for the differentiation of miPSCs into urothelial cells. Methods and Results: Our protocol made the visualization of differentiation processes of a 2-step approach possible. We firstly induced miPSCs into posterior definitive endoderm (DE) with glycogen synthase kinase-3𝛽 (GSK3𝛽) inhibitor and Activin A. We investigated the optimal conditions for DE differentiation with GSK3𝛽 inhibitor treatment by varying the treatment time and concentration. Differentiation into urothelial cells, was directed with all-trans retinoic acid (ATRA) and recombinant mouse fibroblast growth factor-10 (FGF-10). Specific markers expressed at each stage of differentiation were validated by flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) assay, immunofluorescence staining, and western blotting Assay. The miPSC-derived urothelial cells were successfully in expressed urothelial cell marker genes, proteins, and normal microscopic architecture. Conclusions: We built a model of directed differentiation of miPSCs into urothelial cells, which may provide the evidence for a regenerative potential of miPSCs in preclinical animal studies.

Molecular characteristics and antimicrobial susceptibility profiles of bovine mastitis agents in western Türkiye

  • Semiha Yalcin;Arzu Ozgen;Metehan Simsir
    • Journal of Veterinary Science
    • /
    • v.25 no.5
    • /
    • pp.72.1-72.14
    • /
    • 2024
  • Importance: Identifying bovine mastitis agents using molecular methods to reveal their phylogenetic relationships and antimicrobial resistance profiles is essential for developing up-to-date databases in mastitis cases that cause severe economic losses. Objective: This study examined bacterial mastitis agents in cows with clinical and subclinical mastitis observed in various dairy cattle farms to reveal their phylogenetic relationships and antibiotic resistance properties. Methods: Sixty-two clinical and subclinical bovine mastitis milk samples were collected from 15 dairy farms. The polymerase chain reaction (PCR) was used to amplify the 16S rRNA gene regions of the bacteria. The 16S rRNA gene sequences obtained from sequencing include the V4-V6 regions. The strains were compared using a similarity analysis method that produced phylogenetic trees using the Molecular Evolutionary Genetics Analysis 11 program. Antibiotic susceptibilities were determined using the Kirby-Bauer disk diffusion method. Results: Sixty-three bacteria were isolated and identified in this study. The most isolated bacteria from all mastitis cases were Staphylococcus spp. (30.2%), Escherichia coli (25.4%), Streptococcus spp. (14.3%), and Aerococcus spp. (7.9%), respectively. The phylogenetic trees were drawn from the 16S rRNA sequences. Some of these bacteria showed resistance to different types of antibiotics at varying rates. Conclusions and Relevance: The bacteria isolated in this study originated from environmental sources. Regular cleaning of barns and proper hygiene practices are essential. Regular screenings for mastitis should be conducted in herds instead of the random or empirical use of antibiotics.