• Title/Summary/Keyword: PCMB

Search Result 20, Processing Time 0.024 seconds

Inhibition of Dicarboxylate Transport by p-chloromercuribenzoic Acid (PCMB) in Plasma Membrane Vesicles of Rabbit Proximal Tubule

  • Kim, Yong-Keun;Kim, Tae-In;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 1991
  • Effect of a sulfhydryl reagent, p-chloromercuribenzoic acid (PCMB), on the transport of succinate was studied in brush border (BBMV) and basolateral (BLMV) membrane vesicles isolated from rabbit renal cortex. PCMB induced an irreversible inhibition of the $Na^+-dependent$ succinate uptake in a dose-dependent manner with $IC_{50}$ of 55 and $65\;{\mu}M$ in BBMV and BLMV, respectively. The inhibitory effect of PCMB was prevented by a pretreatment of vesicles with dithiothreitol. PCMB did not increase $Na^+$ permeability at concentrations inhibiting succinate uptake. The PCMB inhibition of succinate uptake was due to a change in Vmax, but not in Km. When membrane vesicles were pretreated with PCMB in the presence of unlabelled succinate, the inhibitory effect was significantly reduced. In both BBMV and BLMV, succinate uptake was inhibited by various sulfhydryl reagents with the inhibitory potency of following order: $HgCl_2$>DTNB>PCMBS>PCMB. These results suggest that sulfhydryl groups are essential for dicarboxylate transport and that they may be located at or near substrate binding sites of the transporters in renal brush border and basolateral membranes.

  • PDF

Effect of PCMB on Organic Ion Transport in Rabbit Renal Cortical Slices (토끼 신피질 절편에서 PCMB가 유기이온의 이동에 미치는 영향)

  • Park, In-Cheol;Kim, Tae-In;Jung, Dong-Keun;Kim, Young-Keun
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.345-352
    • /
    • 1990
  • To determine the role of sulfhydryl group in transport of organic ions across the basolateral membrane of renal proximal tubules, effect of p-chloromercuribenzoic acid (PCMB) on the transport of tetraethylammonium (TEA) and p-aminohippurate (PAH) was studied in rabbit renal cortical slices. PCMB caused irreversible inhibition of TEA and PAH uptake in a dose-dependent manner, with $I_{50}$ value (concentration for 50% inhibition) of $30\;{\mu}M$ for TEA and $75\;{\mu}M$ for PAH. Kinetic analysis of TEA and PAH uptakes showed that PCMB decreased Vmax $(62.35\;vs.\;28.32\;n\;mole/g{\cdot}min\;fur\;TEA:\;385.24\;vs.\;170.36\;n\;mole/g{\cdot}min\;for\;PAH)$ without changing Km. The inhibitory action of PCMB on TEA and PAH uptakes was independent of pH of the pretreatment medium. The inhibitory effect of PCMB on the uptake of TEA or PAH was prevented by dithiothreitol, but not by the substrate. PCMB inhibited Na-K-ATPase activity in a dose-dependent manner with $I_{50}$ value of $50\;{\mu}M$, which is similar to those for TEA and PAH uptake. These results suggest that PCMB inhibits the transport of organic cations and anions in the renal basolateral membrane by directly affecting the SH-group in the transporter molecules or secondly by altering the Na-K-ATPase activity.

  • PDF

Reaction Mechanism of Purine Nucleoside Phosphorylase and Effects of Reactive Agents for SH Group on the Enzyme in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 얻은 Purine Nucleoside Phosphorylase의 반응기작과 효소에 대한 Sulfhydryl Reagent의 영향)

  • Choi, Hye-Seon
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.222-231
    • /
    • 1994
  • Kinetic analysis was done to elucidate the reaction mechanism of purine nucleoside phosphorylase (PNP) in Saccharomyces cerevisiae. The binary complexes of PNP${\cdot}$phosphate and PNP${\cdot}$ribose 1-phosphate were involved in the reaction mechanism. The initial velocity and product inhibition studies demonstrated were consistent with the predominant mechanism of the reaction being an ordered bi, bi reaction. The phosphate bound to the enzyme first, followed by nucleoside and base were the first product to leave, followed by ribose 1-phosphate. The kinetically suggested mechanism of PNP in S. cerevisiae was in agreement with the results of protection studies against the inactivation of the enzyme by sulfhydryl reagents, p-chloromercuribenzoate (PCMB) and 5,5'-dithiobisnitrobenzoate (DTNB). PNP was protected by ribose 1-phosphate and phosphate, but not by nucleoside or base, supporting the reaction order of ordered bi, bi mechanism. PCMB or DTNB-inactivated PNP was totally reactivated by dithiothreitol (DTT) and the activity was returned to the level of 77% by 2-mercaptoethanol, indicating that inactivation was reversible. The kinetic behavior of the PCMB-inactivated enzyme had been changed with higher $K_m$ value of inosine and lower $V_m$, and was restored by DTT. Inactivation of enzyme by DTNB showed similar pattern of K sub(m) value with that by PCMB, but had not changed the $V_m$ value, significantly. Negative cooperativity was not found with PCMB or DTNB treated PNP at high concentration of phosphate.

  • PDF

Chemical Modification and Feedback Inhibition of Arabidopsis thaliana Acetolactate Synthase (아라비돕시스 탈리아나 Acetolactate Synthase의 화학적 변형과 되먹임 방해)

  • Hong, Seong-Taek;Choi, Myung-Un;Shin, Jung-Hyu;Koh, Eun-Hie
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • Acetolactate synthase (ALS) was partially purified from Escherichia coli MF2000/pTATX containing Arabidopsis thaliana ALS gene. The partially purified ALS was examined for its sensitivity toward various modifying reagents such as iodoacetic acid, iodoacetamide, N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (PCMB), and phenylglyoxal. It was found that PCMB inhibited the enzyme activity most strongly followed by DTNB and NEM. Since iodoacetic acid did not compete with substrate pyruvate, it appeared that cysteine is not involved in the substrate binding site. On the other hand, the substrate protected the enzyme partly from inactivation by phenylglyoxal, which might indicate interaction of arginine residue with the substrate. The partially purified enzyme was inhibited by end products, valine and isoleucine, but not by leucine. However, the ALS modified with PCMB led to potentiate the feedback inhibition of all end products. Additionally, derivatives of pyrimidyl sulfur benzoate, a candidate for a new herbicide for ALS, were examined for their inhibitory effects.

  • PDF

Characterization of Cysteine Residues in Cabbage Phospholipase D by Sulfhydryl Group Modifying Chemicals (설프히드릴 변형 화합물질들에 의한 양배추 포스포리파제 D의 시스테인 잔기의 특성)

  • Go, Eun-Hui
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.362-368
    • /
    • 2006
  • SH group modifying chemicals were used to characterize the eight cysteine residues of cabbage PLD. 5,5-dithiobis(2-nitrobenzoate)(DTNB) was used to titrate the SH group of cysteine residues . Based on the optical density at 412nm due to the reduced DTNB, 4 SH groups are found to be present in a native PLD while 8 SH groups in the denatured PLD whose tertiary structure was perturbed by 8M urea. The results imply that among the 8 cysteine residues of PLD, the half(4) are exposed on the surface whereas the other half are present at the interior of the enzyme tertiary structure. The PLD was inactivated by SH modifying reagents such as p-chloromercuribenzoate(PCMB), iodoacetate, iodoacetamide, and N-ethylmaleimide. At the addition of dithiothreitol(DTT) only the PCMB inhibited PLD activity was recovered reversibly. The micro-environment of the exposed SH group of cysteine residues was examined with various disulfide compounds with different functional groups and we found that anionic or neutral disulfides appear to be more effective than the positively charged cystamine for inactivating the PLD activity. The effect of redox state of cysteine residues on the PLD activity was further explored with H2O2. The oxidation of SH groups by H2O2 inhibited the PLD activity more than 70%, which was mostly recovered by DTT. From these results, we could confirm chemically that all the cysteine residues of PLD are present as in their reduced SH forms and the 4 SH groups exposed on the surface of the enzyme may play important roles in the regulation of PLD activity.

Chemical Modification of Serratia marcescens Acetolactate Synthase with Cys, Trp, and Arg Modifying Reagents

  • Choi, Ho-Il;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.40-45
    • /
    • 1995
  • Acetolactate synthase purified from Serratia marcescens ATCC 25419 was rapidly inactivated by the thiol specific reagent p-chloromercuribenzoate (PCMB), the tryptophan specific reagent N-bromosuccinimide (NBS), and the arginine modifying reagent phenylglyoxal (PGO). Inactivation by PCMB was prevented by both ${\alpha}$-ketobutyrate and pyruvate, and the second order rate constant for the inactivation was $2480\;M^{-1}{\cdot}min^{-1}$. The reaction order with respect to PCMB was 0.94. The inactivation of the enzyme by NBS was also substantially reduced by both ${\alpha}$-ketobutyrate and pyruvate. The second order rate constant for inactivation by NBS was $15,000\;M^{-1}{\cdot}min^{-1}$, and the reaction order was 2.0. On the other hand, inactivation by PGO was partially prevented by ${\alpha}$-ketobutyrate, but not by pyruvate. The second order rate constant for the inactivation was $1480\;M^{-1}{\cdot}min^{-1}$ and the order of reaction with respect to PGO was 0.75. These results suggest that essential cysteine, tryptophan and arginine are located at or near the substrate binding site.

  • PDF

Kinetics of Intracellular Adenosine Deaminase to Substrate Analogs and Inhibitors in Aspergillus oryzae (Aspergillus oryzae의 세포내 효소인 Adenosine Deaminase의 기질 유사체와 억제물질에 대한 반응속도론적 분석)

  • Choi, Hye-Seon
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.84-90
    • /
    • 1994
  • Kinetic parameters of various substrates and inhibitors were measured to elucidate the binding requirements of the active site of intracellular adenosine deaminase (ADA) in Aspergillus oryzae. 3'-Deoxyadenosine was the best substrate according to the value of relative kcat/$K_m$. Purine riboside was found to be the strongest inhibitor with the $K_i$ value of $3.7{\times}10^{-5}$M. Adenine acted neither as a substrate nor as an inhibitor, suggesting the presence of ribose at N-9 of adenosine was crucial to binding. ADA also catalyzed the dechlorination of 6-chloropurine riboside, generating inosine and chloride ions. Substrate specificity of 6-chloropurine riboside was 0.86% of adenosine. Purine riboside, a competitive inhibitor of ADA, inhibit the dechlorination with similar $K_i$ value, suggesting that the same binding site was involved in deamination and dechlorination. Among the sulfhydryl group reagents, mercurials, pchloromercuribenzoate (PCMB), mersalyl acid and $HgCl_2$ inactivated the enzyme. Mersalyl acid-inactivated ADA was reactivated by thiol reagents, but PCMB-inactivated enzyme was not. When ADA was treated with the mercurial reagents, the inhibition constants and inhibition patterns were determined. Each inhibition was competitive with substrate. The $K_i$ values of these mercurial reagents were lower in 10 mM phosphate buffer than in 100 mM phosphate buffer, showing phosphate dependency.

  • PDF

Saprolegnia ferax에 의한$\beta$-amylase의 생산 및 특성

  • Bai, Suk;Cho, Nam-Chul;Chun, Soon-Bai
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 1997
  • The Oomycete Saprolegnia ferax produces an extracellular $\beta$-amylase, Maximum enzyme yield was attained after 7 days of growth in YNB starch medium (pH 6.5) at 25$\circ$C. The amylase was pu- rified 24-fold by ultrafitration, HPLC DEAE column and HPLC gel filtration. The purfied enzyme was a monomeric glycoprotein with a molecular weight of about 44,000 dalton. The pH and temperature optima were 6.5 and 50$\circ$C, respectively. The enzyme was fairly stable up to 50$\circ$C and at acidic pH region (pH 4.0-7.0). The apparent Km and Vmax values of the enzyme against soluble starch were 0.77 mg/ml and 2,174 $\mu$moles/mg protein, respectively. Amino acid analysis indicated that the enzyme was enriched in alanine, glycine, leucine and acidic amino acid. Starch hydrolysis with the enzyme released maltose but not glucose, whereas maltotriose, Schardinger dextrin ($\alpha$-cyclodextrin) and pullulan were not hydrolysed by the enzyme. The enzyme was inhibited by Schardinger dextrin, p-chloromercuribenzoate(PCMB), CU$^{2+}$' and Hg$^{2+}$. Inhibition of the enzyme by PCMB could be reversed by the addition of cysteine and mercaptoethanol.

  • PDF

Purification and Some Properties of Chitinase from Serratia marcescens JM (Serratia marcescens JM에 의한 Chitinase의 정제와 특성)

  • Lee, Sang Hwan;Yu, Euy-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • A chitinase-producing bacterium, Serratia marcescens JM, was isolated from a seashore muds. A chitinase was purified by ammonium sulfate precipitation, affinity adsorption, hydroxylapatite and sephadex G-200 column chromatography. The chitinase obtained from Serratia marcescens JM was purified 42.2 folds with the overall yield of 7.1%. The purified chitinase showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 59,000 and the apparent kinetic parameters $K_m\;and\;V_{max}$ for the purified chitinase were 5.17 mg/mL and 39.8 unit/mL, respectively. The optimum pH and temperature of the purified chitinase were 7.0 and 50$^{\circ}C$, respectively and the purified enzyme was stable on pH 7.0 up to 50$^{\circ}C$. The enzyme were activated by $Cu^{2+},\;Ca^{2+}\;and\;Mg^{2+}$ and inhibited by $Hg^{2+}$ respectively. In addition, Cysteine increased the chitinase activity and EDTA, MIA, PCMB and SDS inhibited enzyme activities. Major cations, $MG^{2+},\;Ca^{2+},\;K^+\;and\; Na^+$ present in seawater slightly stimulated the chitinase activity.

  • PDF

Partial Purification and Characterization of Halotolerant Alkaline Protease from Halomonas marisflava KCCM 10457 Isolated from Salt-fermented Food

  • In, Man-Jin;Oh, Nam-Soon;Kim, Dong-Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.75-78
    • /
    • 2005
  • Halotolerant protease produced by Halomonas marisflava KCCM 10457 was partially purified through ammonium sulfate precipitation and Sephacryl S-200HR gel permeation chromatography. Optimal pH and temperature of protease were 11.0 and $45^{\circ}C$, respectively. Enzyme activity was inhibited by $Cu^{2+}$, $Hg^{2+}$, $Fe^{2+}$, and $Fe^{3+}$, and selectively inhibited by p-chloromercuribenzoic acid (PCMB), suggesting this enzyme is cysteine protease. The enzyme is halotolerant, because it retained 77% of original activity in presence of 3.33 M NaCl. The protease showed broad substrate specificity to various natural proteins; BSA, casein, egg albumin, gelatin, and hemoglobin.