• Title/Summary/Keyword: PCFF

Search Result 3, Processing Time 0.015 seconds

Effect of Types of Force-fields on Gas Transport Thorough Polymer Membrane (Force-field가 고분자 분리막의 기체 투과거동에 미치는 영향)

  • Lee, Ji-Su;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • In this study, we investigated how the force-field, which is the most important factor to define atomic motion in molecular dynamics (MD), affects the motion of the polymer and gas molecules. The repeat units and the polymer structure were well simulated in all five force-fields, and the distribution of the polymer linear chain in the final polymer 3D model did not show any significant difference. However, the movement of actual gas molecules showed a very different tendency, which was also observed in COMPASS and pcff using the same functional form. Therefore, even if the same structure is used, it can be seen that the motion of the gas molecule moves under the influence of the force-field continuously over time, so that the effect is much larger than that of macromolecules such as a polymer linear chain. Accordingly, in case of using different force-fields, it is necessary to be very careful in comparison of those results.

Free Radical Polymerization Algorithm for a Thermoplastic Polymer Matrix : A Molecular Dynamics Study (무정형 열가소성 고분자의 자유 라디칼 중합 분자동역학 시뮬레이션 알고리즘)

  • Jung, Ji-Won;Park, Chan-Wook;Yun, Gun-Jin
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.163-169
    • /
    • 2019
  • In this paper, we constructed a molecular dynamics (MD) polymer model of PMMA with 95% of conversion by using dynamic polymerization algorithm of a thermoplastic polymer based on free radical polymerization. In this algorithm, we introduced a united-atom level coarse-grained force field that combines the non-bonded terms from the TraPPE-UA force field and the bonded terms from the PCFF force field to alleviate the computation efforts. The molecular weight distribution and the average molecular weight of the polymer were calculated by investigating each chain generated from the free radical polymerization simulation. The molecular weight of the polymer was controlled by the number of initiator radicals presented in the initial state and molecular weight effect to the density, the glass transition temperature, and the mechanical properties were studied.