Image training is a very important yet difficult state for automated visual inspection using computers. Because the size of parts for the recently produced PCB (Printed Circuit Board) becomes smaller and circuit patterns gradually become more complex, a difficult and complex training process is becoming a big problem within an industry where development cycle for new products is short and various products must be inspected. This research produced a reference image by using CAD (Gerber) file which becomes a standard for PCB automatic visual inspection. Reference image from a Gerber file guarantees PCB patterns with no defects. Through system implementation and experimentation, Gerber file is used in order to propose a plan which allows an easy training process for PCB automatic visual inspection system.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.289-290
/
2024
PCB(Printed circuit board)생산시에 중요한 역할을 담당하는 비전검사 시스템의 성능은 지속적으로 발전해왔다. 기존 머신 비전 검사 시스템은 이미지가 불규칙하고 비정형일 경우 해석이 어렵고 전문가의 경험에 의존한다. 그리고 비전검사 시스템 개발 당시의 기준과 다른 불량이 발생한다면 검출이 불가능 하거나 정확도가 낮게 나온다. 본 논문에서는 이를 개선하고자 딥러닝 영상인식을 이용한 PCB 기판 비전 검사 시스템을 구현하였다. 딥러닝 영상인식 알고리즘은 YOLOv4를 이용하고, 워핑(warping)과 시킨 PCB 이미지를 학습하여 비전검사 시스템을 구성하였다. 딥러닝 영상인식 기술의 처리 속도를 보완하고자 QR코드로 PCB 기판 종류를 인식하고, 해당 PCB 부품의 미삽은 정답 이미지 바운딩 박스 좌표와 비교하여 불량품을 발견하면 표시해준다. 기판의 부품 인식을 위해 기판 데이터는 직접 촬영하여 수집하였다. 이를 활용하여 PCB 생산 공정에서 비전검사 시스템의 성능이 향상되었고,, 다양한 PCB를 생산에 신속하게 대응할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.518-519
/
2016
AOI 검사기는 SMT 공정 상에서 PCB (printed Circuit Board) 상의 부품들을 카메라로 촬영하고 촬영된 영상을 2D 혹은 3D 형태의 이미지로 재구성하고 분석하여 이상 여무를 판단하는 장비다. 검사를 하고자 하는 PCB의 크기가 카메라가 촬영할 수 있는 영역 보다 큰 경우가 대부분이기 때문에 PCB 상에 마운트 되어 있는 부품들을 모두 촬영하기 위해서는 여러 차례 나누어 촬영해야 할 필요가 있으며 이 때문에 PCB 상에 촬영해야 하는 부품들을 가능한 FOV에 많이 포함될 수 있도록 여러 FOV 영역으로 나누고 이렇게 나누어진 FOV 영역들을 최적의 경로로 이동하며 촬영할 수 있도록 하기 위한 알고리즘이 필요하다. 기존 논문들은 대부분 이 문제를 해결하기 위한 알고리즘에 대해 다루어 왔다. 일반적으로 생산이 진행되는 시점에서는 검사해야 할 PCB에 대한 정보 (PCB의 크기, 부품의 위치, 크기, 종류 등)는 이미 정해져 있기 때문에 경로 계획 최적화 수행은 PCB 정보에 변동이 없다면 한차례만 하면 된다. 하지만 검사를 할 수 있도록 Teaching 하는 단계에서는 PCB 정보가 지속적으로 변경될 수 있으며 이에 따라 최적화를 여러 차례 수행해야 할 필요성이 있다. 최적화를 위한 처리 시간은 부품의 개수, PCB 상에서의 분포정도등에 따라 증가하기 때문에 PCB 정보가 변경될 때 마다 최적화를 수행하게 되면 비효율적으로 처리 시간이 증가하게 된다. 본 논문에서는 이 문제에 대해 연구하고 해결책을 제시하였다.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.210-214
/
2001
PCB관련 제품의 최종 제작단계에서 defect 검사 과정은 제품의 질을 유지하기 위해 필수적인 단계이다. PCB 자동화 검사 시스템은 사람에 의해 이루어지는 품질검사에서 발견되는 비용을 절감하고, 신뢰성있는 제작 프로세스를 유지하기 위해 적극적으로 개발되고 있다. 이 논문에서는 PCB 필름의 defect를 검사하기 위하여 적응적 템플렛 기반 검사 방법을 제시하고자 한다. 고정된 템플릿은 구현하기 편리하고 속도면에서 이점을 발휘할 수 있으나, 강력한 센서의 선택에 제약이 있을 환경 하에서 100%에 근접하는 오류검출률 defect detection rate이 요구되는 고정된 템플릿을 제작하는 것에 문제가 있을 수 있다. 여기서는 템플릿 모델에 유연성을 부여하기 위하여 템플릿의 이미지를 목표 이미지들의 상태에 따라 템플릿을 적응적으로 구축하여 검사과정에 동적으로 적용하는 기법을 개발하고자 한다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.327-328
/
2020
본 논문에서는 저전력 저비용 임베디드 환경에서 PCB 검사 기법을 제안한다. 특히, IC 미삽에 대한 검출 알고리즘을 제안하고 실험한다. 고사양의 컴퓨팅 시스템에서는 CNN과 같은 딥러닝 뉴럴 네트워크를 사용하여 특별한 알고리즘을 고려하지 않아도 대규모의 데이터를 입력함으로써 모델을 완성하고 이를 통해 PCB 검사를 수행할 수 있다. 그러나 데이터의 양이 충분하지 않거나 충분한 전력과 비용을 투입하지 못하는 임베디드 환경에서는 각 부품에 따른 컴퓨터 비전 알고리즘이 필요하다. IC의 경우 타부품에 비하여 형태가 직사각으로 정형화 되있으며 색상도 균일한 특징을 가지고 있기에 미삽에 대한 검출이 가능하다. 베어보드(Bare Board)의 색상과 IC 부품의 색상이 확연히 다를 경우에는 RGB 픽셀을 카운트 하는 히스토그램 카운팅 알고리즘만으로 검출이 가능하다. 베어보드의 색삭과 IC의 색상이 유사할 경우에는 베어보드의 핀 혹은 홀의 형태를 감지하여 검출이 가능하다. 본 논문에서는 베어보드의 색상와 IC의 색상이 같을 경우에 다를 경우를 나누어 미삽 검사를 수행하고 그 정확도를 확인한다.
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.325-326
/
2018
본 논문에서는 PCB 공정상의 육안검사를 통한 불량 분류 방식에서 CNN을 이용한 PCB 불량 분류 방식을 제안한다. 이 방식은 육안검사의 문제점인 작업자의 숙련도에 따른 검사 효율을 자동화 검사 시스템에 의해 해결하며, 불량 위치와 종류를 결과 이미지에 표시한다. 또한 이미지 분류 결과를 모니터링할 수 있도록 시리얼 통신을 통하여 Darknet 프레임워크와 LCD를 연동하였다. 적은 량의 데이터 셋으로도 좋은 결과를 냈으며, 다양한 데이터 셋을 이용해 훈련할 시 전반적인 PCB 불량의 분류가 가능할 것으로 예상된다.
Proceedings of the Korean Society of Precision Engineering Conference
/
1996.04a
/
pp.675-679
/
1996
제품의 소형화, 고성능화, 부품의 제작기술의 급속한 발전으로 SMD실장기술은 소형화, 고밀도화로 진 보를 이루어왔다. 그러나, 기존의 PCB 검사 방법으로는 정확하고, 균일한 검사가 어려워 이를 해결할 수 있는 검사 방법이 요구되어 왔다. Machine Vsion에 의한 검사는 균일하고 정확하며, 불량의 유형도 판별하여 전체 공정의 제어가 가능한 방법이다. 본 연구에서는 영상처리에 적합한 영상을 쉽게 얻을 수 있도록 고휘도 LED를 사용하고, 밝기 조절이 가능한 영상획득부를 설계하였으며, Morphology filter룰 사용하여 빠르고, 안정된 noise 제거 및 edge 검출 알고리즘을 구현하였다.
Journal of the Korean Society for Precision Engineering
/
v.23
no.3
s.180
/
pp.102-109
/
2006
Several methods for PCB pattern inspection have been tried to detect fine detects in pad contours, but their low detection accuracy results from pattern variations originating from etching, printing and handling processes. The adaptive inspection algorithm has been newly proposed to extract minute defects based on movable segments. With gerber master images of PCB, vertex extractions of a pad boundary are made and then a lot of segments are constructed in master data. The pad boundary is composed of segment units. The proposed method moves these segments to optimal directions of a pad boundary and so adaptively matches segments to pad contours of inspected images, irrespectively of various pattern variations. It makes a fast, accurate and reliable inspection of PCB patterns. Its performances are also evaluated with several images.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.446-449
/
2007
영상 학습은 컴퓨터를 이용한 자동 시각 검사에서 매우 중요하고 어려운 단계이다. 전자산업과 같이 신제품 개발 주기가 짧고 다양한 제품들을 검사하여야 하는 분야에서 어렵고 복잡한 학습 과정은 큰 문제가 되고 있다. 본 연구에서는 CAD 파일을 이용하여 PCB 자동 시각 시스템의 학습 과정을 손쉽게 할 수 있는 방안을 제시하였다.
For the PCB inspection by computer vision, in some cases, the MRLC file should prepared. The MRLC file contains a RLC(Run Length Code) and a direction flag. In this paper, a generating method of MRLC is described. It is composed of two procedure as followings; (i) rasterizing Gerber file which is a vectorized image of PCB panel, and (ii) calculating a MRLC that is useful for the inspection as a template image. The suggested procedures are written in C-language and executable on Windows 95 and Windows NT.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.