본 논문은 유비쿼터스 컴퓨팅 환경 기반에서의 온라인 얼굴인식 시스템 구현을 기술한다. 구현된 시스템은 CMOS 카메라를 장착한 PDA를 이용하여 얼굴영상을 획득하고 이 영상을 무선랜을 이용하여 인증 서버로 전송하여 서버로부터 인증된 결과를 받도록 하였다. 먼저 클라이언트 측인 PDA에서는 등록과 인증을 확인할 수 있도록 임베디드 비주얼 프로그램으로 사용자 인터페이스를 구축하고, 서버 영역에서는 얼굴인식에서 탁월한 성능을 보이는 PCA와 LDA 알고리즘을 사용하여 PDA로부터 전송 받은 얼굴 데이터를 학습하고 인식한 결과를 재전송하는 부분이 구현되었다. 시스템 구현에서 실시간성을 확보하기 위해 PDA에서는 영상에 웨이블렛을 이용하여 압축한 뒤 압축률 효과가 좋은 JPG 형식의 데이터로 서버에 전송하였다. 본 논문에서 구현한 시스템은 학습과정에서 미리 구한 고유값을 이용하여 테스트 얼굴영상을 같은 공간에 투영시켜 서로간의 유사도를 비교하도록 하여 얼굴인식 속도 및 성능을 개선하였다.
본 논문에서는 집적 영상의 획득과 복원을 통하여 장애물에 가려진 물체를 인식하는 기술은 제안하고 구현하였다. 집적 영상의 복원은 해당되는 화소 세기의1차 확률적 특성인 평균으로 구한다. 복원평면까지의 거리는 2차 확률적 특성인 표준 편차를 이용하여 구하고3차원 물체의 경계(edge)를 검출한다. 표준 편차의 합을 최소로 하는 거리에서 복원된 영상을 표적인식에 이용한다. 표적인식은 주성분 분석(principle component analysis, PCA) 분류기를 복원된 영상에 적용하였다. 표적 분류에 대한 판정은 분류기에 의해서 투영된 클래스의 평균 특징 벡터와 테스트 특징 벡터간의 유클리드 거리(Euclidean distance)를 이용한다. 실험 및 시뮬레이션을 통하여 가려진 표적을 본 논문에서 제안한 방법을 통하여 오차 없이 분류하였다.
In this paper a new feature extraction and target classification method is proposed for the recognition part of FLIR(Forwar Looking Infrared)-image-based ATR system. Proposed feature extraction method is "cluster(=set of classes)-based"version of previous fisherfaces method that is known by its robustness to illumination changes in face recognition. Expecially introduced class clustering and cluster-based projection method maximizes the performance of fisherfaces method. Proposed target image classification method is based on the mixture of experts model which consists of RBF-type experts and MLP-type gating networks. Mixture of experts model is well-suited with ATR system because it should recognizee various targets in complexed feature space by variously mixed conditions. In proposed classification method, one expert takes charge of one cluster and the separated structure with experts reduces the complexity of feature space and achieves more accurate local discrimination between classes. Proposed feature extraction and classification method showed distinguished performances in recognition test with customized. FLIR-vehicle-image database. Expecially robustness to pixelwise sensor noise and un-wanted intensity variations was verified by simulation.
본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.
얼굴영상의 인식 기술은 보안과 감시를 비롯하여 머신 인터페이스와 콘텐츠 검색 등에서 활용이 광범위 하다. 그러나 주로 고해상도 영상이 연구의 대상이었고 원거리에서 획득된 저해상도 표적에 대하여 상대적으로 드물게 연구가 이루어졌다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법을 이용하여 저해상도 환경에서 얼굴영상의 인식을 수행한다. 포톤 카운팅 선형판별법은 Fisher 선형 판별법에서 발생하는 특이행렬 문제없이 Fisher의 최적화 기준을 실현한다. 즉, 차원의 축소나 특징 추출 과정 없이 고차원 공간에서 최적화된 투영을 위한 선형판별함수를 구성하고 이를 이용하여 판정하므로 저해상도 환경을 비롯한 얼굴영상의 왜곡의 극복에 효과적이다. 실험 결과는 제안한 방법이 주성분 분석을 활용하는 Eigen face 또는 주성분 분석과 Fisher 선형판별법이 결합된 Fisher face보다 우수하다는 것을 보여준다.
부공간 투영기술(subspace projection)을 이용한 얼굴인식기술의 성능은 이들 기저영상들(basis images)의 특징과 밀접한 관련이 있다. 특히 표정변화와 같은 국부적 왜곡이나 오클루전이 있는 경우의 인식성능은 기저영상들의 특징에 의해 영향을 받게 된다. 부공간 투영기반의 얼굴인식 방법이 오클루전이나 표정변화와 같은 국부적인 왜곡발생에 강인하려면 부분국부적 표현(part-based local representation)의 기저벡터를 갖는 것이 중요하다. 본 연구에서는 국부적 왜곡과 오클루전에 강인한 효과적인 부분국부적 표현방법을 제안한다. 제안한 방법을 LS-ICA(locally salient ICA) 방법이라고 명명하였다. LS-ICA방법은 ICA 구조I의 기저영상을 구하는 과정에서 공간적인 국부성(locality)의 제약조건을 부과함으로써 부분국부적 기저영상(part-based local basis images)을 얻는 방법이다. 결과적으로 공간적으로 현저한 특징만을 포함하는 기저영상을 사용하게 되며, 이는 "Recognition by Parts"의 방법론과 유사하다. LS-ICA방법과 LNMF(Localized Non-negative Matrix Factorization)와 LFA(Local Feature Analysis)와 같은 기존의 부분 표현방법(part-based representation)들에 대해 다양한 얼굴영상 데이타베이스를 사용하여 실험한 결과, LS-ICA방법이 기존의 방법에 비하여 높은 인식성능을 보였으며, 특히 오클루전이나 국부적인 변형이 포함된 얼굴영상에서 뛰어난 인식성능을 보였다.
AAM(Active Appearance Model)은 PCA(Principal Component Analysis)를 기반으로 객체의 형태(shape)와 질감(texture) 정보에 대한 통계적 모델을 통해 얼굴의 특징점을 검출하는 알고리즘으로 얼굴인식, 얼굴 모델링, 표정인식과 같은 응용에 널리 사용되고 있다. 하지만, AAM알고리즘은 초기 값에 민감하고 입력영상이 학습 데이터 영상과의 차이가 클 경우에는 검출 에러가 증가되는 문제가 있다. 특히, 입을 다문 입력얼굴 영상의 경우에는 비교적 높은 검출 정확도를 나타내지만, 사용자의 표정에 따라 입을 벌리거나 입의 모양이 변형된 얼굴 입력 영상의 경우에는 입술에 대한 검출 오류가 매우 증가되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 입술 특징점 검출을 통해 정확한 입술 영역을 검출한 후에 이 정보를 이용하여 AAM을 수행함으로써 얼굴 특징점 검출 정확성을 향상시키는 방법을 제안한다. 본 논문에서는 AAM으로 검출한 얼굴 특징점 정보를 기반으로 초기 입술 탐색 영역을 설정하고, 탐색 영역 내에서 Canny 경계 검출 및 히스토그램 프로젝션 방법을 이용하여 입술의 양 끝점을 추출한 후, 입술의 양 끝점을 기반으로 재설정된 탐색영역 내에서 입술의 칼라 정보와 에지 정보를 함께 결합함으로써 입술 검출의 정확도 및 처리속도를 향상시켰다. 실험결과, AAM 알고리즘을 단독으로 사용할 때보다, 제안한 방법을 사용하였을 경우 입술 특징점 검출 RMS(Root Mean Square) 에러가 4.21픽셀만큼 감소하였다.
음소에 대한 사전지식 없이 음성의 신호나 특징벡터 만으로부터 음소별 경계를 추출하는 맹목 세그멘테이션의 한가지 방법은 음소별 특징벡터들 사이의 거리를 최소화하는 경계를 찾는 것이다. 이런 방법에서 특징벡터들 사이의 거리척도로 유클리드 거리가 자주 사용되고 있지만 한 음소의 특징벡터들 사이에도 많은 변화가 있어 단순한 유클리드 거리척도만으로는 음소별 경계를 추출하기에 효율적이지 못하다. 본고에서는 한 음소에 속하는 특징벡터들의 전체적인 추이를 반영한 특징벡터들 사이의 거리를 구하기 위해 주요고유성분분석법(principal component analysis)을 이용하는 방법을 제안한다. 이 방법에서는 각 특징벡터들과 이들을 주요고유성분에 투영한 점 사이의 거리를 척도로 이용한다. 제안하는 거리척도를 LBDP 알고리즘에 적용하여 연속음성의 음소간 경계를 추출하는 실험을 수행하였다. 실험 결과, 단순한 유클리드 거리를 척도로 할 때 보다 약 3-6% 정도의 누락오류를 줄일 수 있어 유용하게 이용될 수 있음을 보였다.
본 논문에서는 에지 방향성 히스토그램과 주성분 분석을 통해서 얻어진 특징 정보를 저차원 제스처 심볼로 구성하여 제스처를 인식하는 알고리즘에 대해 기술한다. 제안된 방법은 기존의 기하학적인 특징 기반 방법이나 외관기반 방법에 비해 많은 계산 량이 요구 되지 않고 최소한의 정보를 사용하고도 높은 인식률을 유지 할 수 있기에 실시간 시스템 구축에 매우 적합하다. 또한 제스처 인식 시 발생하는 잘못된 인식이나 인식 오차를 줄이기 위해 객체 공간상에 투영된 모델 특징 값을 은닉마르코프 모델의 입력 기호로 이용되기 위해서 군집화 알고리즘을 통해 특정한 상태 기호로 구성한다. 이렇게 함으로써 임의의 입력 제스처는 확률 값이 가장 높은 해당 제스처 모델로 인식하게 된다.
본 논문에서는 초분광 형광영상과 반사영상 융합을 이용한 닭의 종양인식방법을 제안하였다. 형광영상에 밴드비율을 적용하여 피부의 정상과 종양부분을 구분한다. 이를 위해 각각 부분의 확률밀도함수의 중첩된 면적을 최소화하는 방법을 사용하였다. 이 방법으로 획득한 4개의 특정영상에 분할-합병법을 적용하여 형광영상 분류결과를 얻었다. 반사영상 분석에서는 단일 밴드가 정보량에 주는 영향에 근거하여 밴드 선택 방법을 제안하였다. 학습데이터에 의해 투영 축을 선택하는 선형변환을 정의함으로써 영상분류에 효과적인 많은 특징을 확보하였다. 이에 따라 반사영상에서도 세밀한 영상의 해석이 가능하였고 특징 선택의 자동화를 실현하였다. 반사영상에서 획득한 특정영상도 분할-합병법으로 분류하였으며 형광영상의 분류결과와 융합하여 종양을 인식하였다. 모의실험을 통해 제안한 방법은 기존의 방법에 비해 오인식이 낮음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.