• Title/Summary/Keyword: PCA(Principle Component Analysis)

Search Result 182, Processing Time 0.029 seconds

Principle Component Analysis on Electrokinetic Measurements for Amphoteric Fibers/Acid Dye System (앰포테릭섬유/산성염료계의 계면동전압 측정치에 대한 PCA)

  • Park, Byeong-Gi
    • Journal of Korean Society for Quality Management
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 1985
  • In the light of the properties of colloids, in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Nylon, wool and silk, the typical amphoteric fibers were dyed with Acid dye and various combinations were prepared by combining pH, temperature and dye concentration, in order to generate flowing electric potential which were measured by microviolt meter and specific conductivity meter. The results were transformed to Zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers, and these data were statistically analysed by principle component analysis.

  • PDF

Defect Classification of Components for SMT Inspection Machines (SMT 검사기를 위한 불량유형의 자동 분류 방법)

  • Lee, Jae-Seol;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.982-987
    • /
    • 2015
  • The inspection machine in SMT (Surface Mount Technology) line detects the assembly defects such as missing, misalignment, loosing, or tombstone. We propose a new method to classify the defect types of chip components by processing the image of PCB. Two original images are obtained from horizontal lighting and vertical lighting. The image of the component is divided into two soldering regions and one packaging region. The features are extracted by appling the PCA (Principle Component Analysis) to each region. The MLP (Multilayer Perceptron) and SVM (Support Vector Machine) are then used to classify the defect types by learning. The experimental results are presented to show the usefulness of the proposed method.

Sleep Disturbance Classification Using PCA and Sleep Stage 2 (주성분 분석과 수면 2기를 이용한 수면 장애 분류)

  • Shin, Dong-Kun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • This paper presents a methodology for classifying sleep disturbance using electroencephalogram (EEG) signal at sleep stage 2 and principal component analysis. For extracting initial features, fast Fourier transforms(FFT) were carried out to remove some noise from EEG signal at sleep stage 2. In the second phase, we used principal component analysis to reduction from EEG signal that was removed some noise by FFT to 5 features. In the final phase, 5 features were used as inputs of NEWFM to get performance results. The proposed methodology shows that accuracy rate, specificity rate, and sensitivity were all 100%.

Classification of Transient Signals in Ocean Background Noise Using Bayesian Classifier (베이즈 분류기를 이용한 수중 배경소음하의 과도신호 분류)

  • Kim, Ju-Ho;Bok, Tae-Hoon;Paeng, Dong-Guk;Bae, Jin-Ho;Lee, Chong-Hyun;Kim, Seong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.57-63
    • /
    • 2012
  • In this paper, a Bayesian classifier based on PCA (principle component analysis) is proposed to classify underwater transient signals using $16^{th}$ order LPC (linear predictive coding) coefficients as feature vector. The proposed classifier is composed of two steps. The mechanical signals were separated from biological signals in the first step, and then each type of the mechanical signal was recognized in the second step. Three biological transient signals and two mechanical signals were used to conduct experiments. The classification ratios for the feature vectors of biological signals and mechanical signals were 94.75% and 97.23%, respectively, when all 16 order LPC vector were used. In order to determine the effect of underwater noise on the classification performance, underwater ambient noise was added to the test signals and the classification ratio according to SNR (signal-to-noise ratio) was compared by changing dimension of feature vector using PCA. The classification ratios of the biological and mechanical signals under ocean ambient noise at 10dB SNR, were 0.51% and 100% respectively. However, the ratios were changed to 53.07% and 83.14% when the dimension of feature vector was converted to three by applying PCA. For correct, classification, it is required SNR over 10 dB for three dimension feature vector and over 30dB SNR for seven dimension feature vector under ocean ambient noise environment.

Detection and Classification of Indoor Environmental gases using Fuzzy ART (Fuzzy ART를 이용한 실내 유해가스의 검출 및 분류)

  • Lee, Jae-Seop;Cho, Jung-Hwan;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.183-186
    • /
    • 2003
  • In this paper, we proposed fuzzy adaptive resonance theory(ART) combined with principle component analysis(PCA) to recognize and classify indoor environmental gases. In experiment Taguchi gas sensors(TGS) are used to detect VOCs. Using thermal modulation of operating temperature of two sensors, we extract patterns of gases from the voltage across the load resistance. We use the PCA algorithm to reduce dimension so it needs less memory and shortens calculation time. Simulation is accomplished to two directions for fuzzy ART with and without PCA.

  • PDF

Design of A Faulty Data Recovery System based on Sensor Network (센서 네트워크 기반 이상 데이터 복원 시스템 개발)

  • Kim, Sung-Ho;Lee, Young-Sam;Youk, Yui-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.

Face recognition System Model using Distributed PCA on Big Network Environment (PCA 알고리즘의 분산을 통한 분산 환경에 적합한 대량의 얼굴 인식 시스템 모델)

  • Jung, Hye-Soo;Lee, Sung-Won;Kim, Hyun-Jung;Won, Il-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.662-665
    • /
    • 2013
  • 다양한 네트워크 단말기와 서버로 이루어져 있는 분산 네트워크 환경에서 사용자의 단말기 단에 대규모로 등록된 사용자의 얼굴을 인식하는 시스템의 요구는 빠르게 증가하고 있다. 우리는 기존의 PCA(Principle Component Analysis) 알고리즘을 분석하여, 알고리즘의 특정 부분을 단말기와 서버로 적절하게 분산시켰다. 이를 바탕으로 다양한 네트워크 환경에 적합한 얼굴인식 시스템 모델을 제시하였다. 제안된 모델의 유용성은 실험을 통해 보이고자 하였다.

Probabilistic K-nearest neighbor classifier for detection of malware in android mobile (안드로이드 모바일 악성 앱 탐지를 위한 확률적 K-인접 이웃 분류기)

  • Kang, Seungjun;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.817-827
    • /
    • 2015
  • In this modern society, people are having a close relationship with smartphone. This makes easier for hackers to gain the user's information by installing the malware in the user's smartphone without the user's authority. This kind of action are threats to the user's privacy. The malware characteristics are different to the general applications. It requires the user's authority. In this paper, we proposed a new classification method of user requirements method by each application using the Principle Component Analysis(PCA) and Probabilistic K-Nearest Neighbor(PKNN) methods. The combination of those method outputs the improved result to classify between malware and general applications. By using the K-fold Cross Validation, the measurement precision of PKNN is improved compare to the previous K-Nearest Neighbor(KNN). The classification which difficult to solve by KNN also can be solve by PKNN with optimizing the discovering the parameter k and ${\beta}$. Also the sample that has being use in this experiment is based on the Contagio.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.

Retrieval of Sulfur Dioxide Column Density from TROPOMI Using the Principle Component Analysis Method (주성분분석방법을 이용한 TROPOMI로부터 이산화황 칼럼농도 산출 연구)

  • Yang, Jiwon;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1173-1185
    • /
    • 2019
  • We, for the first time, retrieved sulfur dioxide (SO2) vertical column density (VCD) in industrial and volcanic areas from TROPOspheric Monitoring Instrument (TROPOMI) using the Principle component analysis(PCA) algorithm. Furthermore, SO2 VCDs retrieved by the PCA algorithm from TROPOMI raw data were compared with those retrieved by the Differential Optical Absorption Spectroscopy (DOAS) algorithm (TROPOMI Level 2 SO2 product). In East Asia, where large amounts of SO2 are released to the surface due to anthropogenic source such as fossil fuels, the mean value of SO2 VCD retrieved by the PCA (DOAS) algorithm was shown to be 0.05 DU (-0.02 DU). The correlation between SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm were shown to be low (slope = 0.64; correlation coefficient (R) = 0.51) for cloudy condition. However, with cloud fraction of less than 0.5, the slope and correlation coefficient between the two outputs were increased to 0.68 and 0.61, respectively. It means that the SO2 retrieval sensitivity to surface is reduced when the cloud fraction is high in both algorithms. Furthermore, the correlation between volcanic SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm is shown to be high (R = 0.90) for cloudy condition. This good agreement between both data sets for volcanic SO2 is thought to be due to the higher accuracy of the satellite-based SO2 VCD retrieval for SO2 which is mainly distributed in the upper troposphere or lower stratosphere in volcanic region.