Im, Jeong Yeon;Kim, Sang-Cheon;Kim, Sena;Choi, Youngmin;Yang, Mi Ran;Cho, In Hee;Kim, Haeng Ran
Korean journal of food and cookery science
/
v.32
no.5
/
pp.567-574
/
2016
Purpose: The objective of this study was to provide nutritional information (protein and amino-acid contents) of soybeans (Baktae, Seoritae, Huktae, and Seomoktae) with different cooking methods. Methods: Raw, boiled (in $100{\pm}15^{\circ}C$ of water for 4 hr), and fried (in a pan at $110{\pm}15^{\circ}C$ for $20{\pm}5min$) soybean samples were prepared. Contents of protein and amino acids were determined. Results: Protein content in raw Baktae, Seoritae, Huktae, and Seomoktae soybeans ranged from 361.0 to 386.8 mg/g. Protein contents differed according to cooking methods. They were higher in pan-fried beans (107.9-113.5%) than in raw or boiled soybeans (48.2-49.5%). A total of 18 amino acids were analyzed. Amino acid data sets were subjected to principle component analysis (PCA) to understand their differences according to soybean types and cooking methods. Bean samples could be distinguished better according to cooking method in comparison with bean types by principle component (PC1) and PC2. In particular, fried soybeans contained much higher levels of cystein. Other amino acids were the dominant in raw and boiled ones. On the other hand, the amounts of threonine, histidine, proline, arginine, tyrosine, lysine, tryptophan, and methionine were higher in raw bean samples than in cooked ones. Conclusion: The contents of amino-acids and proteins are more effected by different cooking methods in comparison with soybean types.
Journal of the Korea Institute of Information Security & Cryptology
/
v.19
no.1
/
pp.71-79
/
2009
Currently much research is being done on host based intrusion detection using system calls which is a portion of kernel based data. Sequence based and frequency based preprocessing methods are mostly used in research for intrusion detection using system calls. Due to the large amount of data and system call types, it requires a significant amount of preprocessing time. Therefore, it is difficult to implement real-time intrusion detection systems. Despite this disadvantage, the frequency based method which requires a relatively small amount of preprocessing time is usually used. This paper proposes an effective method for detecting denial of service attacks using the frequency based method. Principal Component Analysis(PCA) will be used to select the principle system calls and a bayesian network will be composed and the bayesian classifier will be used for the classification.
This study investigated the heat level rating of several varieties of Korean red peppers. The chemical constitution of Korean red pepper samples were as follows: 0.54~290.15 mg% capsaicinoids, 79.22~139.09 ASTA value, and 16.76~29.92% free sugar content. The heat level of the Korean red pepper samples was evaluated by trained panelists and the correlation coefficient and F value (0.001%) of the panelist’s results were determined to be significant. In the principle component analysis (PCA), PC1 (capsaicinoids) and PC2 (free sugar) were shown to represent 31.98% and 25.77% of the total variance, respectively. The results of panelists trained for red pepper heat rating were evaluated using analysis of variance and correlation analysis. The trained panelists showed a high F value (p=0.05) and high correlation coefficient. A high correlation efficient of 0.84~0.93 for the test samples with a 40 Scoville heat unit (32,000 SHU red pepper powder) was reported in the sensory evaluation of the Korean red pepper heat level by a trained panel. However, the panel showed a low correlation efficiency of 0.70 $R^2$ when the 60 SHU test samples were included in the analysis.
In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).
In this paper, we describe an algorithm which can automatically recognize human gesture for Human-Robot interaction. In early works, many systems for recognizing human gestures work under many restricted conditions. To eliminate these restrictions, we have proposed the method that can represent 3D and 2D gesture information simultaneously, APM. This method is less sensitive to noise or appearance characteristic. First, the feature vectors are extracted using APM. The next step is constructing a gesture space by analyzing the statistical information of training images with PCA. And then, input images are compared to the model and individually symbolized to one portion of the model space. In the last step, the symbolized images are recognized with HMM as one of model gestures. The experimental results indicate that the proposed algorithm is efficient on gesture recognition, and it is very convenient to apply to humanoid robot or intelligent interface systems.
Journal of the Korean Institute of Telematics and Electronics C
/
v.36C
no.12
/
pp.90-97
/
1999
Recently, there have been many researches to automate processing and analysing image data in medical field, due to the advance of image processing techniques, the fast communication network and high performance hardware. In this paper, we design and implement the system based on the multi-layer neural network model to be able to analyze, differentiate and count blood cells in the peripheral blood image. To do these, we segment red and white-blood cell in blood image acquired from microscope with CCD(Charge-coupled device) camera and then apply the various feature extraction algorithms to classify. In addition to, we reduce multi-variate feature number using PCA(Principle Component Analysis) to construct more efficient classifier. So, in this paper, we are sure that the proposed system can be applied to a pathological guided system.
To address infra-specific relationships of Sedum kamtschaticum Fisch., and to provide the fundamental information for developing new horticultural variations, we analyzed the morphology of individuals in four natural populations (Mt. Gwangdeok, Mt. Samyeong, Mt. Yonghwa, Tongyeong) and investigated the vegetations of these area. Based on 50 morphological characters the principle component analysis (PCA) has been performed. Principle component axis 1, 2, and 3 explain 22.9%, 14.2%, and 7.4% of total variations, respectively. Dot plot of OTUs in PC2 by PC1 area showed that the areas of four populations are completely overlapped. The result of PCA and the statistics of each character indicate that all of morphological characters are overlapped in these four populations. The maximum deviations are found in the characters related in the size and shape of the leaf. In the vegetation analyses, eighteen community plots that we investigated were grouped into 10 subcommunities: subcomm. Boehmeria spicata, subcomm. Artemisia stolonifera, subcomm. Artemisia keiskeana, subcomm. Impatiens nolitangere, subcomm. Crepidiastrum chelidoniifolium, subcomm. Urtica thunbergiana, subcomm. Artemisia gmelini, subcomm. Commelina communis, subcomm. Erigeron annuus-Artemisia princeps, and typical subcommunity.
In this study, data collected from geotechnical instrumentation, analyzers using Stochastic methods for evaluating the state of law and the automation program was developed. Is expected based data driven non-parametric methods modeling may be useful for evaluation of complex geotechnical instrumentation installed on the system from the measurements collected. Result of the verification of assessment techniques developed by the sensing data collected from the actual ground structures (reinforced retaining wall and tunnel), PCA analysis techniques applied to the present study was to determine the structural behavior and environmental factors.
Journal of Advanced Marine Engineering and Technology
/
v.38
no.6
/
pp.771-780
/
2014
We installed HF Radar of Array type in Site A and Site B, observing the real-time wave and current in the central East coast of Korea. WERA(WavE RAdar) in this research uses HF Radar of Array Type with frequency range of 24.525 MHz, developed by Helzel, Germany. Each site is a 8-Channel system consisting of four transmitters and eight receivers, generating wave and current data, being observed every thirty minutes at the present time. HF Radar has grid resolution of an interval of 1.5 km using bandwidth of 150 kHz; The wave data covers an observation range of about 25 km, and the current data covers the maximum observation range of about 50 km. The Wave data observed by HF Radar was compared and verified with the AWAC data observed in the research sites. MIT also compared the Current data observed by HF Radar with Monthly the East sea average surface current and current flow pattern provided by KOHA(Korea Hydrographic and oceanographic Administration). The regression line and deviation of the comparison data of Wave was calculated by Principal Component Analysis, which showed correlation coefficient 0.86 and RMSD 0.186. Besides, data analysis of long-term changes of the current in the East coast showed that, during August and September, the North Korean Cold Current flow into the southward direction and the East Korean Warm Current flow into the northward direction in the coast.
Park, Hyung-Hu;Ok, Chi-Sang;Kang, Se-Sik;Ko, Sung-Jin;Choi, Seok-Yoon
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.7
/
pp.1573-1582
/
2011
Risk of lung cancer among lung-related diseases has gradually increased during last decades. The chest digital radiography is the primary diagnosis method for lung cancer. Diagnosing lung cancer using this method requires doctors of ripe experience. Despite their experience there are often wrong diagnoses, which decrease early diagnosis and survival rates of patients. The aim of this study was intended to establish the base on the Computer Aided Diagnosis (CAD) by analyzing Image Recognition Algorithm using Principle component Analysis (PCA) and diagnosing patient's chest X-ray image. The database obtained through this approach enables a doctor to significantly reduce misdiagnosis during the early diagnosis stage, if he or she utilizes it as the preliminary reading step. Case studies were carried out using normal organ, and organs suffering from bronchogenic carcinoma and granuloma. A normal image and unique disease images were extracted after PCA analysis, and their cross-recognition efficiency were compared each other. The result revealed that the recognition rate was much high between normal and disease images, but relatively low between two disease images. In order to increase the recognition efficiency among chest diseases the related algorithms have to be developed continuously in the future study, and such effort will establish the resolute base for CAD.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.