• Title/Summary/Keyword: PC12 cells

Search Result 444, Processing Time 0.031 seconds

Arachidonic Acid Ingibits Norepinephrine Release through Blocking of Voltage-sensitive $Ca^{2+}$ Channels in PC12 Cells

  • Choi, Se-Young;Park, Tae-Ju;Choi, Jun-Ho;Kim, Kyong-Tai
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.81-86
    • /
    • 1997
  • We studied the mechanism of arachidonic acid on the secretion of a neurotransmitter in rat pheochromocytoma PC12 cells. Arachidonic acid inhibited the 70 mM $K^+$-induced secretion of norepinephrine. Arachidonic acid also inhibited the 70 mM $K^+$-induced $Ca^{2+}$ mobilization which is due to the opening of the voltage-sensitive $Ca^{2+}$ channels (VSCC). Both the half maximal inhibitory concentration ($IC_{50}$) of the norepinephrine secretion and VSCC coincided at 30 uM. The major oxidized metabolites of arachidonic acid, prostaglandins did not mimic the inhibitory effect of arachidonic acid. Nordihydroguaiaretic acid (NDGA) and indomethacin which are inhibitors of lipoxygenase and cyclooxygenase, respectively, did not block the inhibitory effect of arachidonic acid. The results suggest that arachidonic acid serves as a signal itself, not in the form of metabolites. The pretreatment of various $K^+$ channel blockers such as 4-aminopyridine, tetraethylarnmonium, glipizide, or glibenclamide also did not show any effect on the inhibitory effect of arachidonic acid. Through these results we suggest that arachidonic acid regulates VSCC directly and affects the secretion of neurotransmitters.

  • PDF

Kinesin-1-dependent transport of the βPIX/GIT complex in neuronal cells

  • Shin, Eun-Young;Lee, Chan-Soo;Kim, Han-Byeol;Park, Jin-Hee;Oh, Kwangseok;Lee, Gun-Wu;Cho, Eun-Yul;Kim, Hyong Kyu;Kim, Eung-Gook
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.380-385
    • /
    • 2021
  • Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex. Additionally, βPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of βPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited βPIX targeting the neurite tips in PC12 cells. Furthermore, truncated mutants of βPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of βPIX, and may provide new insights into βPIX/GIT complex-dependent neuronal pathophysiology.

Investigation of Anxiolytic- and Antidepressant-like Effects of Essential Oils from Six Traditional Korean Herbal Prescriptions

  • Ly Thi Huong Nguyen;Nhi Phuc Khanh Nguyen;Khoa Nguyen Tran;Heung-Mook Shin;In-Jun Yang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.36-44
    • /
    • 2023
  • Essential oils and aromatherapy have traditionally been used for the treatment of anxiety and depression with few side effects. This study aimed to investigate the effects of essential oils from six herbal prescriptions known to be effective in treating anxiety and depression in Korean medicine. The neuroprotective and anti-neuroinflammatory effects of six essential oils, including Gamisachil-tang (GMSCT), Guibi-tang (GBT), Sihogayonggolmoryeo-tang (SYM), Danchisoyosan (DCSYS), Sihosogansan (SHSGS), and Soyosan (SYS), were examined in PC12 and BV2 cells. In corticosterone (CORT)-stimulated PC12 cells, all six essential oils ameliorated the CORT-induced decrease in cell viability at a concentration of 10 ㎍/ml. GMSCT, GBT, and SHSGS recovered CORT-induced cytotoxicity at concentrations of 1 ㎍/ml and 10 ㎍/ml. In lipopolysaccharide (LPS)-stimulated BV2 cells, GBT (10 ㎍/ml) decreased interleukin (IL)-1β production, whereas SHSGS (1 ㎍/ml) inhibited tumor necrosis factor (TNF)-α production. In the MK-801-induced anxiety in zebrafish, electroencephalogram (EEG) assessment indicated that GMSCT and SHSGS induced recovery in the delta and beta power densities and reduced theta/beta and delta/beta ratios. DCSYS and SYS decreased theta power density and theta/beta ratio, whereas GBT and SYM showed no effects on EEG signals. In the tail suspension test (TST) in mice, GBT, DCSYS, SHSGS, and SYS exhibited antidepressant-like effects by decreasing immobility time. These results suggest that the essential oils from the six herbal prescriptions, except SYM, may have beneficial effects on anxiety and/or depression. Further studies should be conducted to investigate the molecular signaling pathways that mediate the effects of these essential oils on anxiety and depression.

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.11a
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy-${\Delta}^{12, 14}$-prostaglandin $J_2$ (15-deoxy-$PGJ_2$), a naturally occurring ligand activates the peroxisome proliferator-activated $receptor-{\gamma}(PPAR-{\gamma}$). Activation of $PPAR-{\gamma}$ has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-$PGJ_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-$PGJ_2$ (0.2 to 1.6 ${\mu}M$) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/ml). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-$PGJ_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-$PGJ_2$(0.8 ${\mu}M$) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-$PGJ_2$ on the expression of p38 MAP kinase and activation of AP-1, The promoting ability of 15-deoxy-$PGJ_2$ did not occur through $PPAR-{\gamma}$, as synthetic PPAR-${\gamma}$ agonist andantagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), $PPAR-{\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and $PGE_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of f 5-deoxy-$PGJ_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-$PGJ_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 single pathway may be important in the promoting activity of 15-deoxy-$PGJ_2$ cells.

  • PDF

Therapeutic Potential of an Anti-diabetic Drug, Metformin: Alteration of miRNA expression in Prostate Cancer Cells

  • Avci, Cigir Biray;Harman, Ece;Dodurga, Yavuz;Susluer, Sunde Yilmaz;Gunduz, Cumhur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.765-768
    • /
    • 2013
  • Background and Aims: Prostate cancer is the most commonly diagnosed cancer in males in many populations. Metformin is the most widely used anti-diabetic drug in the world, and there is increasing evidence of a potential efficacy of this agent as an anti-cancer drug. Metformin inhibits the proliferation of a range of cancer cells including prostate, colon, breast, ovarian, and glioma lines. MicroRNAs (miRNAs) are a class of small, non-coding, single-stranded RNAs that downregulate gene expression. We aimed to evaluate the effects of metformin treatment on changes in miRNA expression in PC-3 cells, and possible associations with biological behaviour. Materials and Methods: Average cell viability and cytotoxic effects of metformin were investigated at 24 hour intervals for three days using the xCELLigence system. The $IC_{50}$ dose of metformin in the PC-3 cells was found to be 5 mM. RNA samples were used for analysis using custom multi-species microarrays containing 1209 probes covering 1221 human mature microRNAs present in miRBase 16.0 database. Results: Among the human miRNAs investigated by the arrays, 10 miRNAs were up-regulated and 12 miRNAs were down-regulated in the metformin-treated group as compared to the control group. In conclusion, expression changes in miRNAs of miR-146a, miR-100, miR-425, miR-193a-3p and, miR-106b in metformin-treated cells may be important. This study may emphasize a new role of metformin on the regulation of miRNAs in prostate cancer.

Neuroprotective effects of herbal mixture HT070 on global cerebral ischemia in rats

  • Song, Jungbin;Lee, Donghun;Kim, Young-Sik;Lee, Hyun Jeong;Lee, Seunggyeong;Kim, Dong Kuk;Kang, Shin Ho;Shin, Yong Kook;Choi, Ho-Young;Kim, Hocheol
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.101-109
    • /
    • 2016
  • Objectives : HT070 is a mixture of herbal extracts from root of Scutellaria baicalensis and stem bark of Eleutherococcus senticosus , which have long been used for stroke therapy in traditional Korean Medicine. The purpose of this study was to investigate the neuroprotective effects of HT070 on global cerebral ischemia and its potential mechanisms.Methods : Transient global cerebral ischemia was produced by 10 min of four-vessel occlusion (4-VO) in male Wistar rats. HT070 was administered orally at a dosage of 200 mg/kg twice at 0 and 90 min after reperfusion. Hippocampal neuronal damage was measured 7 days after reperfusion. To explore the potential mechanisms, we used hydrogen peroxide (H2O2)-induced rat pheochromocytoma (PC12) cells as an in vitro model. PC12 cells were pretreated with HT070 for 1 h and then exposed to 100 μM H2O2 for 6 h in the presence of HT070. Cell viability was measured by MTT assay and the mRNA expression of Bax, Bcl-2, iNOS and COX-2 were measured by quantitative RT-PCR.Results : Oral administration of HT070 at a dose of 200 mg/kg significantly reduced neuronal death in the hippocampal CA1 region by 13.4% as compared to the vehicle-treated group. HT070 increased cell viability, reversed the down-regulated Bcl-2 mRNA level, and suppressed the up-regulated mRNA expressions of Bax, iNOS, and COX-2 in H2O2-treated PC12 cells.Conclusions : HT070 protects against delayed neuronal death after global cerebral ischemia and its neuroprotection properties might be attributed to the inhibition of mitochondrial apoptosis and ROS-generating enzymes.

Growth Stimulation and Inhibition of Differentiation of the Human Colon Carcinoma Cell Line Caco-2 with an Anti-Sense Insulin-Like Growth Factor Binding Protein-3 Construct

  • YoonPark, Jung-Han
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.266-272
    • /
    • 1999
  • The insulin-like growth factor (IGF) system consisting of IGF-I, IGF-II, IGF-receptors, and IGF-binding proteins (IGFBP) regulates the proliferation of a variety of cancer cell types. To examine whether a decrease in endogenous IGFBP-3 stimulates proliferation or inhibits differentiation, Caco-2 cells, a human colon adenocarcinoma cell line, were stably transfected with an anti-sense IGFBP-3 expression construct or pcDNA3 vector as control. Accumulation of IGFBP-3 mRNA and secretion of IGFBP-3 into serum-free conditioned medium, 9 days after plating, were significantly lower in Caco-2 cell clones transfected with anti-sense IGFBP-3 cDNA compared to the controls. The anti-sense clones grew at a similar rate to the controls for 8 days after plating, but achieved a higher final density between days 10 and 12. The levels of sucrase-isomaltase mRNA, a marker of enterocyte differentiation of Caco-2 cells, were lower in the anti-sense clones examined on day 9. In conclusion, proliferation of Caco-2 cells can be stimulated by lowering endogenously-produced IGFBP-3.

  • PDF

MDMA (Ecstasy) Induces Egr-1 Expression and Inhibits Neuronal Differentiation

  • Lee, Ji-Hae;Kim, Sung-Tae;Choi, Don-Chan;Lee, Seung-Hoon
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.173-178
    • /
    • 2011
  • The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoaminergic neurotoxin with the potential to cause serotonergic neurotoxicity, but has become a popular recreational drug. Little has been known about the cellular effects induced by MDMA. This report shows that MDMA inhibits neuronal cell growth and differentiation. MDMA suppressed neuronal cell growth. The results of quantitative real-time PCR analysis showed that Egr-1 expression is elevated in mouse embryo and neuroblastoma cells after MDMA treatment. Transiently transfected Egr-1 interfered with the neuronal differentiation of neuroblastoma cells such as SH-SY5Y and PC12 cells. These findings provide evidence that the abuse of MDMA during pregnancy may impair neuronal development via an induction of Egr-1 over-expression.

Induction of Apoptotic Cell Death by a Ceramide Analog in PC-3 Prostate Cancer Cells

  • Oh, Ji-Eun;So, Kwang-Sup;Lim, Se-Jin;Kim, Mie-Young
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1140-1146
    • /
    • 2006
  • Ceramide analogs are potential chemotherapeutic agents. We report that a ceramide analog induces apoptosis in human prostate cancer cells. The ceramide analog induced cell death through an apoptotic mechanism, which was demonstrated by DNA fragmentation, the cleavage of poly ADP ribose polymerase (PARP), and a loss of membrane asymmetry. Treating the cells with ceramide analog resulted in the release of various proapoptotic mitochondrial proteins including cytochrome c and Smac/DIBLO into the cytosol, and a decrease in the mitochondrial membrane potential. In addition, the ceramide analog decreased the phospho-Akt and phospho-Bad levels. The expression of the antiapoptotic Bcl-2 decreased slightly with increasing Bax to Bcl-2 ratio. These results suggest that the ceramide analog induces apoptosis by regulating multiple signaling pathways that involve the mitochondrial pathway.

Acetylcholinesterase Inhibitory Activity and Protective Effect against Cytotoxicity of Perilla Seed Methanol Extract (들깨 메탄올 추출물의 acetylcholinesterase 억제활성 및 세포독성 보호효과)

  • Choi, Won-Hee;Um, Min-Young;Ahn, Ji-Yun;Kim, Sung-Ran;Kang, Myung-Hwa;Ha, Tae-Youl
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1026-1031
    • /
    • 2004
  • Acetylcholinesterase inhibitory activity and protective effect against cytotoxicity of PC 12 cell induced by beta-amyloid protein and glutamate were examined in perilla seed methanol extract and its solvent fractions. Methanol extract of perilla seed showed dose-dependent acetylcholinesterase inhibitory activity, with n-butanol fraction showing strongest activity. Perilla seed methanol extract also decreased glutamate- and ${\beta}-amyloid$ protein $(A{\beta})-induced$ cytotoxicities of PC 12 cells dose-dependently. Formation of TBARS induced by $FeSO_{4^-}H_2O_2$ in rat brain was significantly reduced by perilla seed methanol extract, with strongest protective activity formation of TBARS shown in n-butanol fraction. Results suggest perilla seed methanol extract may attenuate actylcholinesterase activity and cytotoxicity induced by glutamate and ${\beta}-amyloid$ protein through suppression of oxidative stress.