• Title/Summary/Keyword: PC12 세포

Search Result 163, Processing Time 0.027 seconds

Phenolic Compounds from Antioxidant Plant Materials and their Protective Effect on PC12 cells (항산화 식물의 페놀성화합물에 의한 PC12 세포보호 효과연구)

  • You, SoHyeon;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.1
    • /
    • pp.86-94
    • /
    • 2018
  • This study was designed to evaluate the antioxidant activities and protective effects on PC12 cells of the extract of Epimedium koreanum and its main constituents icariin and icariside I. After screening the seven identified flavonoid glycosides from E. koreanum through DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay, E. koreanum, Icariin and Icariside I exhibited significant effect on radical scavenging activity. E. koreanum, icariin and icariside I were examined using DPPH, ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (ferric reducing ability power) assay. In all antioxidant assays, E. koreanum, icariin and icariside I showed high radical scavenging activities in a dose-dependent manner. Protective effects against $H_2O_2-induced$ PC12 cells were assessed with MTT assay. The results indicated that cell viability and protection on PC12 cells of icariside I and icariin increased dose dependently. These study results suggest that E. koreanum, icariin and icariside showed high antioxidant capacities and cell protective effects. Icariside I, one of the metabolites of icariin, may be a new and effective flavonoid compound as a functional component.

The Effects of Venlafaxine on Neurite Growth of PC12 Cells (벤라팍신이 PC12 세포의 신경돌기 성장에 미치는 영향)

  • Oh, Hong-Seok;Choi, Joon-Ho;Lee, Jun-Seok;Lee, Joon-Noh;Choi, Mi-Ran;Chai, Young-Gyu;Kim, Seok-Hyeon;Yang, Byung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.10 no.2
    • /
    • pp.126-132
    • /
    • 2003
  • Objectives:The purpose of this study is to examine the effects of venlafaxine, one of novel antidepressant drugs, on neurite growth in PC12 cells. Methods:PC12 cells were cultured with NGF for eight days. Then different concentrations($0{\mu}M$, $1{\mu}M$, $5{\mu}M$) of venlafaxine were mixed with cultured PC12 cells. After 24 hours and 48 hours of culture, we compared the effects of venlafaxine on the total length of neurites of cultured PC12 cells between no venlafaxine treated group($0{\mu}M$) and venlafaxine treated groups($1{\mu}M$ and $5{\mu}M$). Additionally, we studied the concentration-dependent effect of venlafaxine on differentiation in PC12 cells. Results:Experimental results showed that 1) the mean length of neurites in $1{\mu}M$ and $5{\mu}M$ venlafaxine treated group was more increased than no venlafaxine treated group(p=0.002). 2) the length of neurite in $5{\mu}M$ venlafaxine treated group was more elongated than $1{\mu}M$ venlafaxine treated group(p=0.046). 3) the length of neurite in $6{\mu}M$ venlafaxine treated group was more elongated than all the other concentrations in our experiment. Above $6{\mu}M$, the length of neurite was shortened in inverse proportion to the concentration of venlafaxine. Conclusions:This results suggest that venlafaxine, one of novel antidepressant drugs, promotes the differentiation of neuron. This study is believed to be a first step toward understanding the molecular and cellular mechanisms of antidepressant treatment.

  • PDF

Neuroprotective Effect of Hwangryunhaedok-tang Against Glucose-deprivation Induced Cytotoxicity in PC-12 Cells (Glucose-deprivation으로 유발된 PC-12 cell의 세포 고사에 대한 황연해독탕(黃連解毒湯)의 보호 효과)

  • Kim, Hye-Yoon;Shin, Sun-Ho;Lee, In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1462-1469
    • /
    • 2008
  • The purpose of the study was to confirm what effect HRHDT treatment had on cell extinction by damage of endoplasmic reticulum induced to PC-12 cell damage by glucose deprivation. The study confirmed what effect it had on forming the condition of glucose deprivation within a culture fluid of PC-12 cell and on a nerve cell's survival rates and tested whether HRHDT could prevent extinction of PC-12 cell by glucose deprivation. Also, the study confirmed what effect HRHDT treatment had on the emitted quantity of LDH by glucose deprivation. To examine PC-12 cell's behavioral change under the condition of glucose deprivation and a protective effect of HRHDT on the change, the study observed PC-12 cell's behavioral change with a microscope. Also, the study confirmed density of calcium ion within cells followed by a culture time in the condition of glucose deprivation with FACS and confirmed what effect HRHDT treatment had on the above density of calcium ion within cells. Finally, the study carried out the western blot and confirmed what effect HRHDT treatment had on revelation of GRP 78 and CHOP protein and a segmental type of aspase 12. In this study, HRHDT rescued PC-12 cells from glucose deprivation-induced cell death. HRHDT also prevents the LDH release, Ca++ accumulation, and morphological change, which was associated with the ER stress. Furthermore, HRHDT reduced the expression of ER chaperone (Grp78 and CHOP) proteins by glucose deprivation in PC-12 cells. These results suggest that HRHDT might provide a useful therapeutic strategy in treatment of the neurodegenerative diseases caused by glucose deprivation injuries.

Inhibitory Effects of Tetrahydropapaveroline on Dopamine Biosynthesis in PC12 Cells (Tetrahydropapaveroline의 PC12 세포내 Dopamine 생합성 저해작용)

  • Lee, Jae-Joon;Kim, Yu-Mi;Kim, Mi-Na;Lee, Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.156-161
    • /
    • 2005
  • Tetrahydropapaveroline (THP) at 5-15 ${\mu}$M has been found to induce L-DOPA-induced oxidative apoptosis in PC12 cells. In this study, the inhibitory effects of THP on dopamine bios ynthesis in PC12 cells and tyrosine hydroxylase (TH) activity in bovine adrenal were investigated. Treatment of PC12 cells with THP at 2.5-10 ${\mu}$M significantly decreased the intracellular dopamine content in a concentration-dependent manner (18.3% inhibition at 10 ${\mu}$M THP). In these conditions, TH activity was markedly inhibited by the treatment with THP at 2.5-10 ${\mu}$M in PC12 cells (23.4% inhibition at 10 $\mu$ M THP). In addition, THP had an inhibitory effect on bovine adrenal TH activity IC50 value, 153.9${\mu}$M). THP exhibited uncompetitive inhibition on bovine adrenal TH activity with a substrate L-tyrosine with the KI value of 0.30 mM. Treatment with L-DOPA at 20~50 ${\mu}$M increased the intracellular dopamine content in PC12 cells, and the increase in dopamine content by L-DOPA was inhibited in part when THP at non-cytotoxic (5-10 ${\mu}$M) or cytotoxic (15${\mu}$M) concentrations was associated with L-DOPA (20 and 50 ${\mu}$M) for 24 h incubation. These results suggest that THP at 5-10${\mu}$M decreases the basal dopamine content and reduces the increased dopamine content induced by L-DOPA in part by the inhibition of TH activity, and that THP at 15${\mu}$M also decreases dopamine content by oxidative stress in PC12 cells.

Heterologous Expression of Fission Yeast Heavy Metal Transporter, SpHMT-1, Confer Tolerance to Cadmium in Cytosolic Phytochelatin-Deficient Saccharomyces cerevisiae (분열효모 SpHMT1을 세포질 파이토킬레이트를 생성하지 않는 효모에서 발현으로 인한 카드뮴에 대한 저항성 증가)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1685-1689
    • /
    • 2009
  • Phytochelatins (PCs) are small polypeptides synthesized by PC synthase (PCS). They are present in various living organisms including plants, fission yeast, and some animals. The presumed function of PCs is the sequestration of cytosolic toxic heavy metals like cadmium (Cd) into the vacuoles via vacuolar membrane localized heavy metal tolerance factor 1 (HMT-1). HMT-1 was first identified in fission yeast (SpHMT-1), and later in Caenorhabdtis (CeHMT-1). Recently, its homolog has also been found in PC-deficient Drosophila (DmHMT-1), and this homolog has been shown to be involved in Cd detoxification, as confirmed by the heterologous expression of DmHMT-1 in fission yeast. Therefore, the dependence of HMT-1 on PC in Cd detoxification should be re-evaluated. I heterologously expressed SpHMT-1 in cytosolic PC-deficient yeast, Saccharomycea cerevisiae, to understand the dependence of HMT-1 on PC. Yeast cells expressing SpHMT-1 showed increased tolerance to Cd compared with control cells. This result indicates that SpHMT-1 is not strictly correlated with PC production on its function. Moreover, yeast cells expressing SpHMT-1 showed increased tolerance to exogenously applied glutathione (GSH) compared with control cells, and the tolerance to Cd was further increased by exogenously applied GSH, while tolerance in control cells was not. These results indicate that the function of SpHMT-1 in Cd detoxification does not depend on PCs only, and suggest that SpHMT-1 may sequester cytosolic GSH-Cd complexes into the vacuole.

Effects of Opuntia ficus-indica var. saboten Ripe Fruits on Protection of Neuronal PC-12 Cells and Cholinesterase Inhibition (백년초의 PC-12 신경세포 보호 및 콜린가수분해효소(cholinesterase) 저해 효과)

  • Hwang, Jeong-Seung;Im, Sungbin;Lee, Inil;Kim, Tae-Rahk;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Oxidative stress caused by reactive oxygen species is ascribed to many neurodegenerative diseases like Alzheimer's disease. Phenolic antioxidants can reduce the oxidative stress. In this study, ripe fruits of Opuntia ficus-indica var. saboten (OFS) were extracted using 80% (v/v) aqueous ethanol. Total phenolic and flavonoid contents of the OFS fruits (100 g) were 409.9 mg gallic acid equivalents and 72.2 mg catechin equivalents, respectively. The OFS fruits had antioxidant capacity at 381.2, 298.2, and 3,219.9 mg vitamin C equivalents/100 g in ABTS, DPPH, and ORAC assays, respectively. The OFS fruits showed protective effects on PC-12 cells against oxidative stress in a dose-dependent manner, partly due to decrease of intracellular oxidative stress. Furthermore, the OFS fruits inhibited both acetylcholinesterase and butyrylcholinesterase. Consequently, these results suggest that the OFS fruits might be served as a source of functional materials to reduce oxidative stress in neuronal cells and to inhibit cholinesterases.

Acetylcholinesterase Inhibitory Activity and Protective Effect against Cytotoxicity of Perilla Seed Methanol Extract (들깨 메탄올 추출물의 acetylcholinesterase 억제활성 및 세포독성 보호효과)

  • Choi, Won-Hee;Um, Min-Young;Ahn, Ji-Yun;Kim, Sung-Ran;Kang, Myung-Hwa;Ha, Tae-Youl
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1026-1031
    • /
    • 2004
  • Acetylcholinesterase inhibitory activity and protective effect against cytotoxicity of PC 12 cell induced by beta-amyloid protein and glutamate were examined in perilla seed methanol extract and its solvent fractions. Methanol extract of perilla seed showed dose-dependent acetylcholinesterase inhibitory activity, with n-butanol fraction showing strongest activity. Perilla seed methanol extract also decreased glutamate- and ${\beta}-amyloid$ protein $(A{\beta})-induced$ cytotoxicities of PC 12 cells dose-dependently. Formation of TBARS induced by $FeSO_{4^-}H_2O_2$ in rat brain was significantly reduced by perilla seed methanol extract, with strongest protective activity formation of TBARS shown in n-butanol fraction. Results suggest perilla seed methanol extract may attenuate actylcholinesterase activity and cytotoxicity induced by glutamate and ${\beta}-amyloid$ protein through suppression of oxidative stress.

Neuroprotective effects of astringency-removed peel extracts of Diospyros kaki Thunb. cv. Cheongdo-Bansi on oxidatively-stressed PC-12 cells (청도반시(Diospyros kaki Thunb. cv. Cheongdo-Bansi) 탈삽 껍질 추출물의 산화스트레스로부터 PC-12 신경세포 보호 효과)

  • Jeong, Da-Wool;Cho, Chi Heung;Rha, Chan Su;Lee, Seung Hwan;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.538-543
    • /
    • 2017
  • Astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) peel with the astringency removed, which is a by-product of dried persimmon (gotgam), was investigated for its antioxidant and neuroprotective properties. A mixture of peel and 40% (v/v) aqueous ethanol was subjected to ultrasonication and then thermal and nonthermal treatments, to produce thermally-treated and nonthermally-treated persimmon peel extracts (TPE and NTPE, respectively). The total phenolic and flavonoid contents and the antioxidant capacity of TPE was approximately 1.3-1.8 times higher than those of NTPE. TPE resulted in the increased viability of neuronal PC-12 cells compared with NTPE. Furthermore, intracellular oxidative stress in PC-12 cells was more decreased by treatment with TPE than NTPE. Cholinesterases, such as acetylcholinesterase and butyrylcholinesterase, were more inhibited by treatment with TPE than NTPE. These results suggest that TPE is useful as a functional material to decrease oxidative stress in neuronal cells and to inhibit cholinesterases.

Insulin Cannot Activate Extracellular-signal-related Kinase Due to Inability to Generate Reactive Oxygen Species in SK-N-BE(2) Human Neuroblastoma Cells

  • Hwang, Jung-Jin;Hur, Kyu Chung
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.280-287
    • /
    • 2005
  • The insulin-mediated Ras/mitogen-activated protein (MAP) kinase cascade was examined in SK-N-BE(2) and PC12 cells, which can and cannot produce reactive oxygen species (ROS), respectively. Tyrosine phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) was much lower in SK-N-BE(2) cells than in PC12 cells when the cells were treated with insulin. The insulin-mediated interaction of IRS-1 with Grb2 was observed in PC12 but not in SK-N-BE(2) cells. Moreover, the activity of extracellular-signal-related kinase (ERK) was much lower in SK-N-BE(2) than in PC12 cells when the cells were treated with insulin. Application of exogenous $H_2O_2$ caused increased tyrosine phosphorylation and Grb2 binding to IRS-1 in SK-N-BE(2) cells, while exposure to an $H_2O_2$ scavenger (N-acetylcysteine) or to a phophatidylinositol-3 kinase inhibitor (wortmannin), and expression of a dominant negative Rac1, decreased the activation of ERK in insulin-stimulated PC12 cells. These results indicate that the transient increase of ROS is needed to activate ERK in insulin-mediated signaling and that an inability to generate ROS is the reason for the insulin insensitivity of SK-N-BE(2) cells.

The Neuroprotective Mechanism of Sunghyangjunggisan Water Extracts on Apoptosis of PC 12 Cell (PC 12 세포의 Apoptosis에 대한 성향정기산의 방어효과 및 작용기전 연구)

  • 최철원;이인;이기상;조남수;문병순
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • Objectives: Sunghyangjunggisan (SHJS) is a commonly prescribed drug with a wide neuropharmacological spectrum. The water extracts of SHJS were found to be protective against neurotoxicity elicited by deprivation of serum and glucose. Methods: The morphological examination and Hoechst staining of nucleus also clearly showed that the extracts attenuated the cell shrinkage, membrane blebbing, representing typical neuronal apoptotic phenomena and nucleosome-sized fragmentation under the microscope in PC 12 rat pheochromocytoma cells. Results: Activation of protein kinase A (PKA) with dibutyl-cAMP and forskolin also protected during glucose deprivation, although it was not additive with the effect provided by phorbol ester. Interestingly, treatment with the protein kinase A inhibitor, KT5720, was not neuroprotective in the presence of SHJS. Electrophoretic mobility shift assays were used to characterize the neuroprotective binding of nuclear proteins to consensus sequences for AP-l, nuclear factor kappa B ($NF-{\kappa}B$) after glucose deprivation. When PC 12 cells are induced to undergo apoptosis by serum deprivation, AP-l and $NF-{\kappa}B$ DNA binding activity transiently increases to a slight degree. This stimulation is blocked by the water extracts of SHJS. The site of action of the drugs appeared to involve specific inhibition of AP-1 and nuclear factor kB binding activity. Conclusions: Taken together, these results suggested the possibility that the extracts of SHJS might provide a neurotrophic-like activity in PC 12 cells.

  • PDF