• Title/Summary/Keyword: PC-Kriging

Search Result 5, Processing Time 0.019 seconds

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.

Prediction of Spatial Distribution Trends of Heavy Metals in Abandoned Gangwon Mine Site by Geostatistical Technique (지구통계학적 기법에 의한 강원폐광부지 중금속의 공간적 분포 양상 예측 연구)

  • Kim, Su-Na;Lee, Woo-Kyun;Kim, Jeong-Gyu;Shin, Key-Il;Kwon, Tae-Hyub;Hyun, Seung-Hun;Yang, Jae-E
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.17-27
    • /
    • 2012
  • This study was performed to evaluate the spatial distribution of heavy metals using principal component analysis and Ordinary Kriging technique in the Gangwon Mine site. In the soils from the sub soil, the contents of Zn and Ni in the PC1 were gradually dispersed from south to north direction, while the components of Cd and Hg in the PC2 showed an increase significantly from middle-south area in the Gangwon Mine site. According to the cluster analysis, pollutant metals of As and Cu were presented a strong spatial autocorrelation structure in cluster D. The concentration of As was 0.83mg/kg and shown to increase from the south to north direction. The spatial distribution maps of the soil components using geostatistical method might be important in future soil remediation studies and help decision-makers assess the potential health risk affects of the abandoned mining sites.

Development and Validation of Multi-Purpose Geostatistical Model with Modified Kriging Method (수정된 Kriging법을 응용한 다목적지구통계모델의 개발 및 타당성 검토)

  • Kim, In-Kee;Sung, Won-Mo;Jung, Moon-Young
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.207-215
    • /
    • 1993
  • In modem petroleum reservoir engineering, the characterization of reservoir heterogeneities is very important to accurately understand and predict reservoir production performance. Formation evaluation for the description of reservoir is generally conducted by performing the analysis of well logging, core testing, and well testing. However, the measured data points by well logging or core testing are in general very sparse and hence reservoir properties should be interpolated and extrapolated from measured points to uncharacterized areas. In assigning the data for the unknown points, simple averaging technique is not feasible as optimum estimation method since this method does not account the spatial relationship between the data points. The main goal of this work is to develop PC-version of multi-purpose geostatistical model in which several stages are systematically proceeded. In the development of model, the simulator employs a automatic selection of semivariogram function such as exponential or spherical model with the best values of $R^2$. The simulator also implements a special algorithm for the fitting of semivariogram function to experimental sernivariogram. The special algorithm such as trial and error scheme is devised since this method is much more reliable and stable than Gauss-Newton method. The simulator has been tested under stringent conditions and found to be stable. Finally, the validity and the applicability of the developed model have been studied against some existing actual field data.

  • PDF

Hydrogeochemical Characterization of Groundwater in Jeju Island using Principal Component Analysis and Geostatistics (주성분분석과 지구통계법을 이용한 제주도 지하수의 수리지화학 특성 연구)

  • Ko Kyung-Seok;Kim Yongie;Koh Dong-Chan;Lee Kwang-Sik;Lee Seung-Gu;Kang Cheol-Hee;Seong Hyun-Jeong;Park Won-Bae
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.435-450
    • /
    • 2005
  • The purpose of the study is to analyze the hydrogeochemical characteristics by multivariate statistical method, to interpret the hydrogeochemical processes for the new variables calculated from principal components analysis (PCA), and to infer the groundwater flow and circulation mechanism by applying the geostatistical methods for each element and principal component. Chloride and nitrate are the most influencing components for groundwater quality, and the contents of $NO_3$ increased by the input of agricultural activities show the largest variation. The results of PCA, a multivariate statistical method, show that the first three principal components explain $73.9\%$ of the total variance. PC1 indicates the increase of dissolved ions, PC2 is related with the dissolution of carbonate minerals and nitrate contamination, and PC3 shows the effect of cation exchange process and silicate mineral dissolution. From the results of experimental semivariogram, the components of groundwater are divided into two groups: one group includes electrical conductivity (EC), Cl, Na, and $NO_3$, and the other includes $HCO_3,\;SiO_2,$ Ca, and Sr. The results for spatial distribution of groundwater components showed that EC, Cl, and Na increased with approaching the coastal line and nitrate has close relationship with the presence of agricultural land. These components are also correlated with the topographic features reflecting the groundwater recharge effect. The kriging analysis by using principal components shows that PC 1 has the different spatial distribution of Cl, Na, and EC, possibly due to the influence of pH, Ca, Sr, and $HCO_3$ for PC1. It was considered that the linear anomaly zone of PC2 in western area was caused by the dissolution of carbonate mineral. Consequently, the application of multivariate and geostatistical methods for groundwater in the study area is very useful for determining the quantitative analysis of water quality data and the characteristics of spatial distribution.

Analysis of Manganese Nodule Abundance in KODOS Area (KODOS 지역의 망간단괴 부존률 분포해석)

  • Jung, Moon Young;Kim, In Kee;Sung, Won Mo;Kang, Jung Keuk
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.199-211
    • /
    • 1995
  • The deep sea camera system could render it possible to obtain the detailed information of the nodule distribution, but difficult to estimate nodule abundance quantitatively. In order to estimate nodule abundance quantitatively from deep seabed photographs, the nodule abundance equation was derived from the box core data obtained in KODOS area(long.: $154^{\circ}{\sim}151^{\circ}W$, lat.: $9^{\circ}{\sim}12^{\circ}N$) during two survey cruises carried out in 1989 and 1990. The regression equation derived by considering extent of burial of nodule to Handa's equation compensates for the abundance error attributable to partial burial of some nodules by sediments. An average long axis and average extent of burial of nodules in photographed area are determined according to the surface textures of nodules, and nodule coverage is calculated by the image analysis method. Average nodule abundance estimated from seabed photographs by using the equation is approximately 92% of the actual average abundance in KODOS area. The measured sampling points by box core or free fall grab are in general very sparse and hence nodule abundance distribution should be interpolated and extrapolated from measured data to uncharacterized areas. The another goal of this study is to depict continuous distribution of nodule abundance in KODOS area by using PC-version of geostatistical model in which several stages are systematically proceeded. Geostatistics was used to analyse spatial structure and distribution of regionalized variable(nodule abundance) within sets of real data. In order to investigate the spatial structure of nodule abundance in KODOS area, experimental variograms were calculated and fitted to a spherical models in isotropy and anisotropy, respectively. The spherical structure models were used to map out distribution of the nodule abundance for isotropic and anisotropic models by using the kriging method. The result from anisotropic model is much more reliable than one of isotropic model. Distribution map of nodule abundance produced by PC-version of geostatistical model indicates that approximately 40% of KODOS area is considered to be promising area(nodule abundance > $5kg/m^2$) for mining in case of anisotropy.

  • PDF