• Title/Summary/Keyword: PAN-based carbon fiber

Search Result 91, Processing Time 0.022 seconds

Effect of Electron Beam Currents on Stabilization of Polyacrlonitrile Precursor Fiber (PAN 전구체 섬유의 안정화시 전자선 전류의 영향)

  • Shin, Hye Kyoung;Jeun, Joon Pyo;Kim, Hyun bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • Polyacrylonitrile (PAN) fibers are the most widely used precursor of the materials for carbon fibers. The conventional process of carbon fibers from PAN precursor fiber includes two step; stabilization at low temperature and carbonization at high temperature. Compared to thermal stabilization, the stabilization process by electron beam (E-beam) irradiation is a advanced and brief method. However, a stabilization by E-beam irradiation was required a high dose (over 5,000 kGy) and spend over 1.5 hr (1.14 MeV, 1 mA). In the present work the main goal is exploring a quick stabilization process by cotrolling E-beam currents. The effect of various E-beam currents on stabilization of PAN precursor fiber was studied by gel fraction test, thermo gravimertic analysis (TGA), differential scanning calorimetry (DSC), tensile strength, and scanning electron microscopy (SEM) images.

Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.219-221
    • /
    • 2015
  • In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm−1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm−1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of PAN-based/Rayon-based Carbon Fabrics (PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.98-101
    • /
    • 2005
  • The mechanical and thermal properties of PAN-based/Rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties was improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate was calculated through torch test. The thermal conductivity of hybrid of spun PAN-based/continuous rayon-based carbon fabric is lower than others.

  • PDF

The Effect of the Structure of the Carbon Fibers on the Structure of the Fiber Intercalated Compounds (탄소섬유의 구조가 섬유층간화합물의 구조에 미치는 영향)

  • 김인기;최상흘;고영신
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.768-774
    • /
    • 1993
  • Sulphuric acid was intercalated in mesophase pitch based graphite fiber (Thornel P100 of Amoco), PAN based graphite fiber (M40 of Thoray) and PAN based carbon fiber (T300 ofThoray, TZ307 of Taekwang in Korea) by 0.4wt% CrO3/H2SO4 solution. The degree of crystallization of fibers increased P100, M40, TZ307, T300 fiber in order and their d002 values were 3.384, 3.424, 3.470, 3.493$\AA$, respectively. After intercalation P100 fiber formed 1 stage compound whose d002 value was 3.994$\AA$(d001=7.988$\AA$). Other fibers showed (002) reflection belonging to their 1 stage comound and prinstine fiber.

  • PDF

A Study on Electrical Resistivity Behaviors of PAN-based Carbon Nanofiber Webs

  • Park, Soo-Jin;Im, Se-Hyuk;Rhee, John-M.;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • The influences of various carbonization temperatures on electrical resistivity and morphologies of polyacrylonitrile (PAN)-based nanofiber webs were studied. The diameter size distribution and morphologies of the nanofiber webs were observed by a scanning electron microscope. The electrical resistivity behaviors of the webs were evaluated by a volume resistivity tester. From the results, the volume resistivity of the carbon webs was ranged from $5.1{\times}10^{-1}\;{\Omega}{\cdot}cm$ to $3.0{\times}10^{-2}\;{\Omega}{\cdot}cm$, and the average diameter of the fiber webs was varied in the range of 310 to 160 nm with increasing the carbonization temperature. These results could be explained that the graphitic region of carbon webs was formed after carbonization at high temperatures. And the amorphous structure of polymeric fiber webs was significantly changed to the graphitic crystalline, resulting in shrinking the size of fiber diameters.

Characteristics of Carbon Fiber Composites for the Application of Smart Sensor (I) (스마트 센서로의 적용을 위한 탄소섬유 복합체의 특성평가 (I))

  • 김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.52-55
    • /
    • 2001
  • Polyacrylonitrile(PAN)-based 탄소섬유와 epoxy resin matrix 내에 장착된 PAN-based 탄소섬유의 전기저항을 탄소섬유와 파괴될 때까지 인장강도를 증가시키며 측정하였다. 탄소섬유가 끊어져 측정 계기가 open-circuit을 나타내기 전까지 탄소섬유의 전기저항 값은 strain이 증가할수록 증가하였으며, epoxy resin은 탄소섬유의 저항값 측정에 거의 영향을 미치지 않았다. 탄소섬유의 저항값 변화는 strain에 대해 정확도 1% 이내로 예측(calibrate)할 수 있었으며 재현성 또한 우수하였다. 따라서 탄소섬유는 재료의 기계적 강도를 증가시키기 위해 사용될 수 있을 뿐만 아니라 구조재료의 파괴를 예측할 수 있는 스마트 센서로서도 사용할 수 있다는 가능성을 확인하였다.

  • PDF

Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber

  • Rhee, Inkyu;Kim, Jin Hee;Park, Sang Hee;Lee, Sungho;Ryu, Bong Ryeul;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.23
    • /
    • pp.22-29
    • /
    • 2017
  • The compressive strength and electrical resistance of pitch-based carbon fiber (CF) in cementitious materials are explored to determine the feasibility of its use as a functional material in construction. The most widely used CFs are manufactured from polyacrylonitrile (PAN-based CF). Alternatively, short CFs are obtained in an economical way using pitch as a precursor in a melt-blown process (pitch-based CF), which is cheaper and more eco-friendly method because this pitch-based CF is basically recycled from petroleum residue. In the construction field, PAN-based CFs in the form of fabric are used for rehabilitation purposes to reinforce concrete slabs and piers because of their high mechanical properties. However, studies have revealed that construction materials with pitch-based CF are not popular. This study explores the compressive strength and electrical resistances of a cement paste prism using pitch-based CF.

The Effect of Heat Treatment Condition on the Mechanical Properties of oxi-PAN Based Carbon Fiber (Oxi-PAN 섬유를 기반으로 제조한 탄소섬유의 탄화 조건에 따른 구조 및 물성의 변화)

  • Choi, Kyeong Hun;Heo, So Jeong;Hwang, Sang-Ha;Bae, Soo Bin;Lee, Hyung Ik;Chae, Han Gi
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.385-391
    • /
    • 2018
  • In this study, carbon fibers were fabricated via carbonization of oxidized polyacrylonitrile (oxi-PAN) under different carbonization conditions. Carbonization of oxi-PAN fiber was performed under four different temperature (1300, 1400, 1500, $1600^{\circ}C$) with four different fiber tensions (14, 25, 35, 45 MPa). Effect of carbonization process on the structural development and mechanical properties of carbon fiber were characterized by single filament fiber tensile test and Raman spectroscopy. A clear correlation exists between the Raman spectrum and the tensile modulus of carbon fiber and effect of carbonization temperature on the tensile modulus showed increased tendency only at higher fiber tension (${\geq}25MPa$) while tensile strength showed decreased or random tendency. Therefore, it may be concluded that the optimization of carbonization temperature of oxi-PAN fiber also requires optimization of fiber tension.

Preparation and Analysis of Activated Carbon Fiber from PAN Precursor(I) (PAN 선구체로부터 활성 탄소섬유의 생산과 분석(I))

  • 김진홍;이화선;박병기;정경락;김공주
    • Textile Coloration and Finishing
    • /
    • v.4 no.4
    • /
    • pp.90-96
    • /
    • 1992
  • In the PAN-based ACF manufacturing system stabilization step was improved with chemical treatment (preoxidation) in order to yield higher carbon content and to avoid excessive fragmentation during carbonization and activation process. The optimal condition of preoxidation was at 18$0^{\circ}C$ for 4 minutes in sodium glyceroxide in glycerine (concentration of NaOH was 0.02 meq/g). To investigate low temperature stabilization effect, preoxidized PAN fiber heated 22$0^{\circ}C$ to 26$0^{\circ}C$ as a function of treatment time and oxidative gas atmosphere, and analysed by infrared spectrum and TGA. As a results of IR and TGA, it was clear that impregnated[preoxidative] PAN had 14% higher residual than untreated PAN at 100$0^{\circ}C$ and the optimal condition of stabilization was at 26$0^{\circ}C$ for 3.5 hours within $N_2$ atmosphere.

  • PDF

Exothermic Characteristics of PAN-based Carbon fiber According to High Temperature Treatment (고온 열처리에 따른 PAN계 탄소섬유의 발열특성)

  • Pyo, Dae-Woong;Eom, Sang-Yong;Lee, Young-Seak;Ryu, Seung-Kon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.218-223
    • /
    • 2011
  • General purpose PAN-based carbon fibers were heat treated up to $1500^{\circ}C$, and analyzed their carbon contents, crstallinity, and crystalline size(Lc). Exothermic characteristics of carbon fiber were investigated in relation to crystallinity, and crystalline size(Lc). Carbon contents, crystallinities, and crystalline size(Lc) of PAN-based carbon fibers increased from 37.08 to 53.69%, and 1.62 to 1.82 nm, respectively as the increase of heat treatment temperature from $1000^{\circ}C$ to $1500^{\circ}C$. Initial surface temperature of fiber tow also linearly increased as the increase of crystallinity, and crystalline size(Lc). Therefore, the crystallinity and crystal size(Lc) of carbon fibers can indirectly and rapidly be estimated by measuring the surface temperature increase.