• Title/Summary/Keyword: PACI

Search Result 20, Processing Time 0.019 seconds

The Study on Manufacture of PACl(Polyaluminum Chloride) from Water Treatment Plant Sludges (정수장 슬러지(Alum Sludge)로부터 PACl(Polyaluminum Chloride) 응집제 제조에 관한 연구)

  • Kim, In-Bae;Lee, Sang-Bong;Kim, Dong-Youn;Kim, Boo-Gil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.441-451
    • /
    • 2000
  • Sludge produced from water treatment plants contains plenty of aluminum due to addition of coagulants, polyaluminum chloride(PACI) which has been widely used in most of water treatment plants. however. the whole of PACI is imported from other countries. In this research. the effective methods for recycling PACI from sludge of water treatment plants were developed and evaluated. Aluminum chloride hexahydrate($AlCl_3{\cdot}6H_2O$) was obtained by sparging HCl gas aluminum extracted from sludge using hydrochloric acid (HCI). This aluminum chloride hexahydrate was solidified by decomposition at $180^{\circ}C$. and dissolved in water to produce PACI. The optimum extraction rate was obtained at the condition of 10 minutes of reaction time. $105^{\circ}C$ of reaction temperature. 27.65%(W/W) of HCI concentration. The KS experiment proved that manufactured aluminum chloride hexahydrate was 98.7% degree and the recycled PACI coagulants agreed with the KS standard. The optimum temperature of decomposition was $180^{\circ}C$ and the basicity of the PACI was decided upon the extent of decomposition The compared experiments between purchased coagulant and manufactured coagulant presented that both coagulants had same performance for turbidity, DOC, $UV_{254}$ absorbance. and chlorophyll-a.

  • PDF

Characterization of Coagulation on Synthetic Polymerization Al(III) Inorganic Coagulants for Water Treatment (상수처리용 합성 무기고분자 Al(III)계 응집제의 응집특성)

  • Han Seung-Woo;Jung Chul-Woo;Kang Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.717-724
    • /
    • 1999
  • This experiment was performed on three parts with prepared coagulants. (1) The characterization of coagulation for PACI coagulants. (2) Comparison of the characterization of coagulation with PAS and PACI coagulants. And (3) Comparison of the characterization of coagulation for the addition of calcium with PACI. Coagulation experiments were conducted with several dosages and pH for each coagulants. For the characterization of coagulation with PACI coagulants, coagulation of Nakdong river waters with three PACls (r=2.0, 2.2, 2.35) showed that the effectiveness of the three coagulants can be considered as r=2.2 > 2.0 > 2.35 which are also the order of higher polymeric aluminum contents. For the comparison of the characterization of coagulation for PAS and PACI coagulants, PAS (r=0.75) coagulants was more effective than other coagulant for the removal of organic matters by sweep floc mechanism with $A;(OH)_{3(S)}$. For comparison of the characterization of coagulation for the addition of calcium with PACI, the presence of divalent cation like $Ca^{2+}$ was supposed to influence the complex formation of organic anions. From the result of test on coagulation at various pH ranges, the PACI was least affected by the coagulation pH, and the addition of calcium to PACI was very effective for the removal of turbidity and organic materials over broader pH range (pH 4-9).

  • PDF

Pollutant Removal and Characteristic of Floc by PACI Coagulation (PACI을 이용한 오염물질 제거 및 입자 특성에 관한 연구)

  • Moon, Byung-Hyun;Kim, Seung-Hyun;Lee, Hyang-In
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.459-468
    • /
    • 2000
  • This study is to investigate the floc structure and removal of turbidity and organic matter by PACI coagulation. The turbidity removal by PACI coagulation was obtained at larger pH range than alum coagulation. And the removal of organic matter was obtained at smaller pH range than that of turbidity. The organic matter was removed by the adsorption of $Al(OH)_3$ precipitates. Floc structure was characterized by measuring fractal dimension and volume diameter using AIA and SALLS. Fractal dimension measured by AIA did not show the different characteristics of floc produced in sweep floe and charge neutralization region. Using SALLS, floes in sweep floc region were found to be larger size and fractal dimension than flocs in charge neutralization region. As pollutant removal increased. larger fractal dimension and size of floc were measured. SALLS method was found to be more useful method to characterize flocs in coagulation than AIA method.

  • PDF

The Coagulation Characteristics of Wastewater Using Poly-γ-glutamic Acid (Poly-γ-glutamic acid(PGA)를 이용한 폐수의 응집특성)

  • Kwon, Kwi-bock;Kim, Dong-ha;Kang, Seon-Hong;Sung, Moon-Hee;Park, Chung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • Poly-${\gamma}$-glutamic acid (${\gamma}-PGA$), which is extracted from fermented soybeans, is a high molecular weight, adhesive, and negatively charged(anionic) polymer. Recently, ${\gamma}-PGA$ has gained attention due to its potential as polymer. The objectives of this study were to examine the applicability of ${\gamma}-PGA$ as a coagulant and/or a coagulant aid, to evaluate the efficiency of ${\gamma}-PGA$ for the removal of Organic and Ammonium substance in wastewater treatment. The effect of coagulation was evaluated for the removal of SS and organic matter using poly aluminum chloride(PACI) as well as newly developed ${\gamma}-PGA$. The maximum COD removal rate of 63% and the SS of 78% were occurred at the dosage of 50mg/L ${\gamma}-PGA$ only. The most effective removal for particulate and organic matter was occured when both PACI and ${\gamma}-PGA$ were applied at the rate of 20:1(10mg/L PACI and 0.5mg/L ${\gamma}-PGA$). When mixed with PACI, only small portion of ${\gamma}-PGA$ was enough to improve removal efficiencies of organic and particulate matter in wastewater. This result showed the positive potential of ${\gamma}-PGA$ as a new coagulant materials for wastewater treatment.

A study on the optimized coagulation for separation of liquid and solid from CMP waste (CMP 폐액의 고액 분리를 위한 최적 응집조건에 관한 연구)

  • Hong, Seongho;Oh, Suckhwan
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The waste slurry generated from CMP process contains particulate and heavy metals. It is hard to treat the waste slurry by conventional treatment method because the particulates in the waste are too fine to be easily separated the solid from the waste for the purpose of water recycling. The investigation was focused on finding the optimum condition of coagulation with two different coagulants. When the solid content in the waste slurry solution was 0.1wt%, the optimal ranges of pH and PACl concentration were 4~6 and 20~50 mg/L, respectively. When the solid content was increased to 0.5wt%, the optimal condition was 4~5 for pH and 50~100 mg/L for PACl concentration.

  • PDF

A Study on the Phosphorus Resources Recovery using the MAP + PACI (Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

Effects of magnetic ion exchange resin with PACI coagulation on removal of natural organic matter and MF fouling (자성체 이온교환 수지와 PACI 응집에 의한 국내 주요 수계 내 자연유기물 제거 특성 및 막오염 저감 효과)

  • Choi, Yang Hun;Jeong, Young Mi;Kim, Young Sam;Lee, Seung Ryul;Kweon, Ji Hyang;Kwon, Soon Buhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.131-140
    • /
    • 2008
  • The application of magnetic ion exchange resin($MIEX^{(R)}$) is effective for natural organic matter(NOM) removal and for control of the formation of disinfection byproducts(DBPs). NOM removal is also enhanced by adding $MIEX^{(R)}$ with coagulant such as polyaluminium chloride(PACl) in conventional drinking water treatment systems. In the application of $MIEX^{(R)}$, it is important to understand changes of NOM characteristics such as hydrophobicity and molecular weight distributions with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant treatment.To observe characteristics of NOM by treatment with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant, four major drinking water sources were employed. Results showed that the addition of $MIEX^{(R)}$ to coagulation significantly reduced the amount of coagulant required for the optimum removal of dissolved organic matter(DOC) and turbidity in the all four waters. The DOC removal was also increased approximately 20%, compared to coagulant treatment alone. The process with $MIEX^{(R)}$ and coagulant showed that complementary removal of hydrophobic and hydrophilic fraction of DOC. The combined processes preferentially removed the fractions of intermediate (3,000-10,000 Da) and low (< 500 Da) molecular weight. The microfiltration test showed that membrane cake resistance was decreased for waters with flocs from $MIEX^{(R)}$+coagulant. A porous layer was formed to $MIEX^{(R)}$ on the membrane surface and the layer consequently inhibited settling of coagulant flocs, which could act on a foulant.

Characterization of Synthetic Polymeric AI(III) Inorganic Coagulants for Water Treatment (상수처리용 합성 무기고분자 Al(III)계 응집제의 화학적특성)

  • Han Seung-Woo;Jung Chul-Woo;Kang Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.711-716
    • /
    • 1999
  • This research explored the feasibility of preparing and utilizing a prefonned polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride and aluminum sulfate solutions did produce high yields of Al polymers useful to water treatment applications. The method of characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic Al species were divided into $monomeric(Al_a),\;polymeric(Al_b),\;and\;precipitate(Al_c)$ from the difference in reaction kinetics. The analysis of PACl's characteristics showed that the quantity of polymeric Al produced at value of$ r(OH_{added}/AI)=2.2$ was $83\%$ of the total aluminum in solution, as showing maximum contents and precipitated Al was dramatically increased when r was increased above 2.35. In addition, the characteristics of polyaluminum sulfate (PAS) showed that polymeric Al contained at r = 0.75 was $18\%$ of the total aluminum in solution. The synthesized PACI and PAS were stable during storing period, as indicating negligible aging effect. The effect of sulfate ion on PACI was dependent on the concentration of sulfate ion. That is, polymeric species decrease and precipitate species increase as sulfate ion concentration increased. It can be concluded that the sulfate cause the formation of $Al(OH)_{3(S)}$ at low pH. However, The effect of calcium ion was negligible for distribution of Al species.

  • PDF

Communications and Family Cohesion & Adaptability Between Mother and Adolescent (어머니와 청소년자녀가 지각하는 의사소통유형과 가족 응집성 및 적응성)

  • 박은주
    • Journal of the Korean Home Economics Association
    • /
    • v.33 no.5
    • /
    • pp.27-38
    • /
    • 1995
  • The purposes of this study were to find out general trends of mother-adolescent communication patterns and to analyze communication variables which influence on family cohesion and adaptability. The subjects were 386 high school students and their mothers living in Kwang-ju. PACI and FACESIII were used to measure mother-adolescent communication patterns and family cohesion and adaptability. The results are as follows : Mothers highly perceived open communication pattern with adolescents, but adolescents perceived close communication more. Communication patterns, family cohesion and adaptability showed significant differences in according to communication variables as communication time and satisfaction. Family cohesion and adaptability were significantly different in according to communication patterns. Especially, open communication pattern between mothers and adolescents was the most important in order to increase family cohesion and adaptability.

  • PDF

Removal Efficiency of Cryptosporidium Tracer in Drinking Water Treatment Process (정수처리 공정에서 Cryptosporidium Tracer의 제거효율)

  • Lee, Shun-Hwa;Kim, Yun-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1304-1309
    • /
    • 2006
  • In this study, removal efficiencies of treatment processes with C. tracer which is similar to the characteristics of Cryptosporidium were investigated. The highest removal efficiency of C. tracer was 97.16% when the input dose of PACI(Poly aluminium chloride, $Al_2O_3$(10%)) was 10 mg/L. The higher turbidity and SS removal efficiencies were, the more C. tracer cohesion efficiency increased. Also when pH of the raw water was high, removal efficiency of C. tracer increased. As the correlationship($R^2$) between effluent turbidity after coagulation-precipitation and removal efficiency of C. tracer was 0.9506, removal efficiency of Cryptosporidium could be evaluated by effluent turbidity after coagulation-precipitation. Also the range of C. tracer removal efficiency by sand filtration was $94.00{\sim}95.83%$ and the correlationship($R^2$) between effluent turbidity after filtration and removal efficiency of C. tracer was 0.8704. Therefore, when filtration-effluent turbidity is good under the optimized coagulation condition, removal efficiencies of Cryptosporidium by coagulation-precipitation, sand rapid filtration and sand rapid filtration after coagulation-precipitation are estimated as 1.55 log(97.16%), 1.38 log(95.83%) and 2.31 log(99.51%) respectively.