• Title/Summary/Keyword: P53

Search Result 7,531, Processing Time 0.035 seconds

PIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination

  • Jin, Min;Park, Seon-Joo;Kim, Seok Won;Kim, Hye Rim;Hyun, Jin Won;Lee, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.396-403
    • /
    • 2017
  • Under normal, non-stressed conditions, intracellular p53 is continually ubiquitinated by MDM2 and targeted for degradation. However, in response to severe genotoxic stress, p53 protein levels are markedly increased and apoptotic cell death is triggered. Inhibiting the ubiquitination of p53 under conditions where DNA damage has occurred is therefore crucial for preventing the development of cancer, because if cells with severely damaged genomes are not removed from the population, uncontrolled growth can result. However, questions remain about the cellular mechanisms underlying the regulation of p53 stability. In this study, we show that p53-inducible gene 3 (PIG3), which is a transcriptional target of p53, regulates p53 stability. Overexpression of PIG3 stabilized both endogenous and transfected wild-type p53, whereas a knockdown of PIG3 lead to a reduction in both endogenous and UV-induced p53 levels in p53-proficient human cancer cells. Using both in vivo and in vitro ubiquitination assays, we found that PIG3 suppressed both ubiquitination- and MDM2-dependent proteasomal degradation of p53. Notably, we demonstrate that PIG3 interacts directly with MDM2 and promoted MDM2 ubiquitination. Moreover, elimination of endogenous PIG3 in p53-proficient HCT116 cells decreased p53 phosphorylation in response to UV irradiation. These results suggest an important role for PIG3 in regulating intracellular p53 levels through the inhibition of p53 ubiquitination.

Lack of p53 Gene Nucleotide Change in Mutation Hot Spots During HeLa Cell Apoptosis by Adriamycin (아드리아마이신에 의한 HeLa 세포의 자살 과정 중 p53 유전자의 돌연변이 빈발 부위에서의 핵산 변화의 부재)

  • Ryu, Seung-Wook;Kim, Jung-Woo;Kim, Eun-Hee
    • The Journal of Natural Sciences
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 1997
  • Apoptosis is an important event in the anticancer drug therapy. p53 was demonstrated to serve a key component to lead tumor cell death by inducing apoptosis. However, recent study showed the presence of p53 independent apoptotic pathway (Gaftenhaus et al., 1996). We were curious to know it apoptosis induced by adriamycin, a genotoxic anticancer agent, involved p53 gene mutation. Thus this study investigated the p53 gene mutation status among HeLa cell population during apoptosis induced by adriamycin. Under our experimental condition, 12 hour treatment of 1 ${\mu}m$ adriamycin caused apoptosis which was monitored by DNA fragmentation assay. In order to see the p53 gene mutation status, exons of 5, 7 and 8 of p53 gene, where previously reported p53 mutation hot spots reside, were amplified by PCR and nucleotide sequence change was scanned. However, no nucleotide change was observed among apoptotic HeLa cell population. Therefore this study demonstrated that adriamycin induced apoptosis without causing p53 gene damage.

  • PDF

Benzo[a]pyrene-induced Modification on p53 and Related Proteins (벤조피렌에 의한 p53 및 관련 단백질 변화)

  • Lee Sun-Mi;Ye Sang-Kyu;Choi Jinhee
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • PAH 위해성 평가의 생체지표 개발을 위하여, benzo[a]pyrene을 인체 간암 세포주인 HepG2세포에 처리하여 암 억제 단백질인 p53 및 관련 단백질의 발현 양상에 대하여 연구하였다. HepG2 세포의 생존력은 benzo[a]pyrene을 노출시킨 군에서 농도가 증가할수록 감소하였다. p53과 인산화 p53의 발현 양상은 benzo[a]pyrene 농도 의존적으로 증가하는 경향을 보였으며, 반면에 아세틸화 p53은 benzo[a]pyrene의 농도가 증가할수록 감소하는 경향을 나타내었다. 세포 주기 조절에 관련된 p21 단백질은 화학 물질 처리에 의해서 p53과 마찬가지로 증가하였으나, CdK4와 Rb 단백질의 발현에는 변화가 없었다. 상관분석 결과 Benzo[a]pyrene 노출, 세포 생존력, p53, 인산화 p53, p21이 서로 높은 상관성을 보였다. 본 연구의 결과는 p53 단백질의 축적이 benzo[a]pyrene 독성에 있어 매우 중요한 현상이며, 이는 선택적인 지표와 함께 p53 이 benzo[a]pyrene과 같은 PAH 계열의 물질의 위해성 평가를 위한 민감한 생체 지표로써 개발될 수 있음을 시사한다.

p53 Mutations in Ewing's Sarcoma (유잉육종의 p53 돌연변이)

  • Bae, Dae-Kyung;Sun, Seung-Deok
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.6 no.4
    • /
    • pp.143-151
    • /
    • 2000
  • Purpose : The p53 tumor suppressor gene is one of the most frequently altered genes in human malignancies. We try to explore the implication of p53 alteration in Ewing's sarcoma. Materials and Methods : We analyzed 35 paraffin blocks to explore the deletion and sequence alterations of p53. Results : Quantitative PCR analysis showed that 2 tumors showed a homozygous deletion of the gene. Mutational analysis of exons 4 to 9 of p53 by PCR-SSCP revealed that 3 tumors carry sequence alterations in exons 5 or 8, and DNA sequencing analysis identified missense point mutations. Conclusion : Taken together, our data demonstrate that p53 is genetically altered in a small fraction of Ewing's sarcoma.

  • PDF

Expression Pattern of RB and p53 Proteins and its Correlation with Prognosis in Primary Lung Cancer (원발성 폐암에서 종양억제유전자 RB와 p53 단백질 발현양상과 예후와의 상관관계)

  • 이상용;허혜경;최필조;우종수;홍숙희
    • Journal of Chest Surgery
    • /
    • v.29 no.11
    • /
    • pp.1223-1231
    • /
    • 1996
  • Immunohistochemical stains for RB and p53 tumor suppressor gene products were performed on 72 cases of resected primary lung cancer tissues to study the correlation between their expressions and the histologic types, the clinical stage, and the survival rate. The results were as follows. 1. The RB protein was altered or absent in 38 cases (52.8%), and the mutant p53 protein was detected in 35 cases (48.6%). 2. The incidences of RB and p53 protein expression were significantly different among the histologic types (p<0.05) but were not correlated with the clinical stages of lung cancer (p>0.05). 3. The two year survival rate of patients with alteration of both RB and p53 genes (RB-/p53+) was 22. 4%, and that with no alteration of both genes (RB+/p53-) was 63.1%. This difference was statistically significant (p=0.01). 4. It was shown that alteration of RB protein greatly affects the prognosis of lung carcinoma by multivariate analysis of prognostic factors. The presence or absence of RB and mutant p53 protein in tumor cells is closely related to the survival of primary lung cancer patients, and it is suggested that RB gene expression is an independent prognostic factor of primary lung cancer.

  • PDF

The Stability of p53 in Ras-mediated Senescent Cells in Response to Nucleolar Stress (Ras에 의해 유도된 노화세포에서 핵인 스트레스에 의한 p53 안정화 연구)

  • Sihn, Choong-Ryoul;Park, Gil-Hong;Lee, Kee-Ho;Kim, Sang-Hoon
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.436-441
    • /
    • 2009
  • B23/nucleophosmin, a nucleolar protein, translocates into the nucleus from the nucleolus when cells are damaged by extracellular stresses. Recently, it was shown that such translocation of B23/nucleophosmin in normal fibroblasts under stress conditions increases both the stability and activation of the p53 protein by disrupting its interaction with MDM2. Senescent cells have a single large nucleolus and a diminished capacity to induce p53 stability upon exposure to various DNA damaging agents. To investigate the role of B23/nucleophosmin in p53 stability in senescent cells, we established a senescence model system by expressing the ras oncogene in IMR90 cells. The stability of p53 was reduced in these cells in response to nucleolar stress, although the level of B23/nucleophosmin protein was not changed. In addition, p53 did not accumulate in the nucleus and B23/nucleophosmin did not translocate into the nucleoplasm. The binding affinity of B23/nucleophosmin with p53 was reduced in senescent cells, whereas the interaction between MDM2 and p53 was stable. Taken together, the stability of p53 in ras-induced senescent cells may be influenced by the ability of B23/nucleophosmin to interact with p53 in response to nucleolar stress.

Streptozotocin, an O-GlcNAcase Inhibitor, Stimulates $TNF\alpha -Induced$ Cell Death

  • Yang Won-Ho;Ju Jung-Won;Cho Jin Won
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.65-67
    • /
    • 2004
  • O-GlcNAcylation of p53 has been already identified and reported, but the function of O-GlcNAc on p53 has not been studied well. In this report, the general function of O-GlcNAc modification on p53 has been investigated using mouse fibroblast cell, L929. When streptozotocin (STZ), a non-competitive O-GlcNAcase inhibitor was treated to L929, O-GlcNAc modification level was dramatically increased on nucleocytoplasmic proteins, including p53. Because it has been already reported that $TNF\alpha$ induced the production of p53 in L929, $TNF\alpha$ was treated to obtain more p53. Approximately two times more amount of p53 was found from the cells treated STZ and $TNF\alpha$ simultaneously compared to the cell treated $TNF\alpha$ alone. The p53 increment in the presence of STZ was not caused by the induction of p53 gene expression. When new production of p53 induced by the $TNF\alpha$ was inhibited by the treatment of cycloheximide, O-GlcNAc modification decreased and phosphorylation increased on pre-existing p53 after $TNF\alpha$ treatment. But in the presence of STZ and $TNF\alpha$ at the same time, more O-GlcNAcylation occurred on p53, The level of ubiquitination on p53 was also reduced in the presence of STZ. Approximately three times less amount of Mdm2 bound to this hyperglycosylated p53. From this result it might be concluded that treatment of STZ to inhibit O-GlcNAcase increased O-GlcNAc modification level on p53 and the increment of O-GlcNAc modification stabilized p53 from ubiquitin proteolysis system.

  • PDF

Replication of Hepatitis B Virus is repressed by tumor suppressor p53 (간암치료신약개발 및 이의 제제화 연구)

  • 이현숙;허윤실;이영호;김민재;김학대;윤영대;문홍모
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.178-178
    • /
    • 1994
  • Hepatitis B Virus (HBV) is a DNA virus with a 3.2kb partially double-stranded genome. The life cycle of the virus involves a reverse transcription of the greater than genome length 3.5kb mRNA. This pegenomic RNA contains all the genetic information encoded by the virus and functions as an intermediate in viral replication. Tumor suppressor p53 has previously been shown to interact with the X-gene product of the HBV, which led us to hypothesize that p53 may act as a negative regulator of HBV replication and the role of the X-gene product is to overcome the p53-mediated restriction. As a first step to prove the above hypothesis, we tested whether p53 represses the propagation of HBV in in vitro replication system. By transient cotransfection of the plasmid containing a complete copy of the HBV genome and/or the plasmid encoding p53, we found that the replication of HBV is specifically blocked by wild-type p53. The levels of HBV DNA, HBs Ag and HBc/e Ag secreted in cell culture media were dramatically reduced upon coexpresion of wild-type p53 but not by the coexpression of the mutants of p53 (G154V and R273L). Furthermore, levels of RNAs originated from HBV genome were repressed more than 10 fold by the cotransfection of the p53 encoding plasmid. These results clearly states that p53 is a nesative regulator of the HBV replication. Next, to addresss the mechanism by which p53 represses the HBV replication, we performed the transient transfection experiments employing the pregenomic/core promoter-CAT(Chloramphenicol Acetyl Transferase) construct as a reporter. Cotransfection of wild-type p53 but not the mutant p53 expression plasmids repressed the CAT activity more than 8 fold. Integrating the above results, we propose that p53 represses the replication of HBV specifically by the down-regulation of the pregenomic/core promoter, which results in the reduced DNA synthesis of HBV. Currently, the mechanism by which HBV overcomes the observed p53-mediated restriction of replication is tinder investigation.

  • PDF

P53 Expression in Squamous Cell Carcinomas of Tongue and Tonsil (설과 편도 편평 상피세포암에서 P53의 표현양상에 관한 연구)

  • Choi, Geon;Kim, Man-Su;Choi, Jong-Ouck;Hwang, Soon-Jae;Yoo, Hong-Kyun
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1993.05a
    • /
    • pp.83-83
    • /
    • 1993
  • The nuclear phosphoprotein p53 is expressed in all normal cells and appears to function in cell cycle regulation. Abnormally high levels of the protein are found in many different types of cancer. In human cancer overexpression of p53 is associated with point mutations within highly conserved regions of p53 gene. These altered genes encode stable p53 proteins that can detected by standard immunocytochemical techniques unable to detect rapidly degraded wild-type protein. Using of a monoclonal antibody to p53 antigen, immunocytochemical analysis of 29 squamous cell carcinomas of tongue(n= 19) and tonsil(n= 10) was performed. Non-tumor nuclei showed all negative reactivity. Positive reactivity was found in 4/29(13.8%)of SCCs of tongue and tonsil. In sizes of primary tumor, the cases over 4cm showed more positive reactivity than the cases under 4cm(p < 0.05). There was no stastical correlation between the reactivity and histopathologic grades, the primary sites of tumor or the presence of cervical metastasis.

  • PDF

The Overview of the Importances of Tumor Suppressor p53 for Investigating Molecular Toxicological Mechanisms of Various Environmental Mutagens (다양한 환경변이원의 분자독성학적 메커니즘 연구에 있어서 항종양 인자 p53의 중요성 고찰)

  • Jung Hwa Jin;Ryu Jae-Chun;Seo Young Rok
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.321-326
    • /
    • 2004
  • The study of p53 tumor suppressor protein is one of most important subjects in an environmental toxicology as well as in cancer biology. Generally, p53 has been known to involve the cell cycle regulation and apoptosis by the activation of its target genes such as p21 and bax in a number of cellular stress responses. In addition, associations of p53 with cellular proteins presumably reflect the involvement of p53 in critical cellular processes such as DNA repair. The complex formation of p53 and exogenous proteins such as viral or cellular proteins has been shown in many cases to play important roles in carcinogenic processes against environmental mutagen. Recently, the disruption of p53 protein by oxidative stress has been also reported to have relevance to carcinogenesis. These findings suggested that the maintaining of stability and functional activity of p53 protein was also important aspect to play as a tumor suppressor protein. Therefore, the detection of functional status of p53 proteins might be an effective biomarker for the cancer and human diseases under the environmental toxicologic carcinogen.