• Title/Summary/Keyword: P450 2C19

Search Result 74, Processing Time 0.032 seconds

Optimization of Ascorbic Acid-2-Phosphate Production from Ascorbic Acid Using Resting Cell of Brevundimonas diminuta

  • Shin, Woo-Jung;Kim, Byung-Yong;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.769-773
    • /
    • 2007
  • With the aim to produce ascorbic acid-2-phosphate(AsA-2-P) from L-ascorbic acid(AsA, Vitamin C), nine bacteria conferring the ability to transform AsA to AsA-2-P were isolated from soil samples alongside known strains from culture collections. Most isolates were classified to the genus Brevundimonas by 16S phylogenetic analysis. Among them, Brevundimonas diminuta KACC 10306 was selected as the experimental strain because of its the highest productivity of AsA-2-P. The optimum set of conditions for the AsA-2-P production from AsA using resting cells as the source of the enzyme was also investigated. The optimum cultivation time was 16 h and the cell concentration was 120g/l(wet weight). The optimum concentrations of AsA and pyrophosphate were 550mM and 450mM, respectively. The most effective buffer was 50mM sodium formate. The optimum pH was 4.5 and temperature was $40^{\circ}C$. Under the above conditions, 27.5g/l of AsA-2-P was produced from AsA after 36 h of incubation, which corresponded to a 19.7% conversion efficiency based on the initial concentration of AsA.

Negligible Effect of Ginkgo Biloba Extract on the Pharmacokinetics of Cilostazol

  • Chung, Hye-Jin;Kim, Nam-Sun;Kim, Eun-Jeong;Kim, Tae-Kon;Ryu, Keun-Ho;Lee, Bong-Yong;Kim, Dong-Hyun;Jin, Chang-Bae;Yoo, Hye-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.311-317
    • /
    • 2009
  • Ginkgo biloba (G. biloba) extract is a widely used phytomedicine for the oral treatment of peripheral vascular disease. Cilostazol is a synthetic antiplatelet and vasodilating agent for the treatment of intermittent claudication resulting from peripheral arterial disease. It is likely to use concomitantly G. biloba extract and cilostazol for the treatment of peripheral arterial disease, which raises a concern of increasing their adverse effects of herbal-drug interactions. To clarify any possible herbal-drug interaction between G. biloba extract and cilostazol, the effect of the G. biloba extract on the pharmacokinetics of cilostazol was investigated. As cilostazol is known to be eliminated mainly by cytochrome P450 (CYP)-mediated metabolism, we investigated the effects of G. biloba extract on the human CYP enzyme activities and the effect of G. biloba extract on the pharmacokinetics of cilostazol after co-administration of the two agents to male beagle dogs. The G. biloba extract inhibited more or less CYP2C8, CYP2C9, and CYP2C19 enzyme activities in the in vitro microsomal study with $IC_{50}$ values of 30.8, 60.5, and $25.2{\mu}g/ml$, respectively. In the pharmacokinetic study, co-administration with the G. biloba extract had no significant effect on the pharmacokinetics of cilostazol in dogs, although CYP2C has been reported to be responsible for the metabolism of cilostazol. In conclusion, these results suggest that there may not be a pharmacokinetic interaction between G. biloba extract and cilostazol.

Convergence study of Comparison of prognosis between Adult and Elderly patients with Traumatic Acute Subdural Hematoma: Retrospective survey research (성인과 노인에서 외상성 급성 경막하 혈종의 예후 비교에 대한 융합적 연구: 후향적 조사 연구)

  • Lee, Seung-Woo;Woo, Sang-Jun;Kim, Eun-A
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.411-422
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the prognosis of traumatic acute subdural hematoma between adults and the elderly to provide appropriate nursing according to age. Methods: A retrospective medical records research study was conducted on 239 patients(adults 104, elderly 135) at Gwangju C university hospital. For data analysis, χ2 test, independent sample t-test, one-way ANOVA were used. Results: There was no difference between GCS at discharge(t=-0.03, p=.978) and GOS at discharge(t=0.17, p=.863). But there were differences in gender(χ2=4.19, p=.041), history(χ2=20.78, p<.001), GCS at admission(t=-2.22, p=.028), pupil reflection at admission(t=8.04, p=.005), pH(t=-3.30, p=.001), serum blood glucose(t=-0.85, p=.040), complications(χ2=6.450, p=.011) between adults and elderly. Conculsion: When nursing patients with traumatic acute subdural hematoma, it is thought that patients assessment and nursing care considering the clinical characteristics according to age can be provided. Future research needs to develop educational materials for medical staff.

CJ-11668, a new selective and potent cox-2 inhibitor, has long-acting pharmacokinetic profiles

  • Park, Hyun-Jung;Kang, Hye-Jung;Chung, Young-Mee;Chun, Hyung-Ok;Hong, Kwang-Hee;Kim, Il-Hwan;Kim, Taek-Rho;Noh, Hyun-Jung;Kim, Deog-Yeor
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.88.1-88.1
    • /
    • 2003
  • CJ-11668 is a new potent and selective COX-2 inhibitor (IC$\sub$50/ COX-2 65nM; COX-l/COX-2 ratio 770). The pharmacokinetic profile of CJ-11668 (20 mg/kg, p.o.) in the rat was characterized by high bioavailability (90%) and long plasma half-life (11.7 hr) with low clearance (0.4 L/hr/kg). In the dog, the PK profiles (2 mg/kg, p.o.) also showed long plasma half-life (l7.9hr) with low clearance (0.5 L/hr/kg), and the bioavalability of 60%. The inhibition of CJ-11668 infive different cytochrome P450 isozymes (1A2, 2C9, 2C19, 2D6 and 3A4) was determined in vitro and had observed no significant effect. (omitted)

  • PDF

Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

  • Hwang, Eun-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with $0.1{\sim}1.0{\mu}M$ BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; $0.5{\mu}M$ and $10{\mu}M$ NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with $0.1{\sim}2.0{\mu}M$ BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with $1{\mu}M$ and $2{\mu}M$ BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with $1{\mu}M$ and $2{\mu}M$ NAC-BITC caused 1.6-and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in $0.1{\sim}2{\mu}M$ BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in $0.1{\mu}M$ NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., $1{\sim}2{\mu}M$) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents.

Screening for inhibitory effect on nine CYP isoforms by 20 herbal medications (고속 스크리닝 기법을 이용한 한약제제의 cytochrome P45O 저해능 탐색)

  • Kim, Hyun-Mi;Liu, Kwang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.334-339
    • /
    • 2007
  • We evaluated the potential of 20 herbal medications (HMs), commonly used in Korea, to inhibit the catalytic activities of several cytochrome P450 (CYP) isoforms. The abilities of 500 ${\mu}g/ml$ of aqueous extracts of 20 HMs to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), rosiglitazone hydroxylation (CYP2C8), tolbutamide 4-methylhydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The HMs Woohwangcheongsimwon suspension and Hwanglyeonhaedok-Tang strongly inhibited CYP2B6 and CYP2D6 isoform activity, respectively. These results suggest that some of the HMs used in Korea have potential to inhibit CYP isoforms in vitro. Although the plasma concentrations of the active constituents of the HMs were not determined, some herbs could cause clinically significant interactions because the usual doses of those individual herbs are several grams of freeze-dried extracts.

Effects of Ticlopidine on the Pharmacokinetics of Diltiazem and Its Main Metabolite, Desacetyldiltiazem, in Rats

  • Choi, Jun-Shik;Yang, Joon-Seung;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.255-260
    • /
    • 2011
  • The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were determined in rats after oral administration of diltiazem (15 $mg{\cdot}kg^{-1}$) with ticlopidine (3 or 9 $mg{\cdot}kg^{-1}$). The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activities were also evaluated. Ticlopidine inhibited CYP3A4 enzyme activity in a concentrationdependent manner with a 50% inhibition concentration ($IC_{50}$) of 35 ${\mu}M$. In addition, ticlopidine did not significantly enhance the cellular accumulation of rhodamine-123 in NCI/ADR-RES cells overexpressing P-gp. Compared with the control (given diltiazem alone), ticlopidine significantly altered the pharmacokinetic parameters of diltiazem. The peak concentration ($C_{max}$) and the area under the plasma concentration-time curve (AUC) of diltiazem were significantly (9 $mg{\cdot}kg^{-1}$, p<0.05) increased in the presence of ticlopidine. The AUC of diltiazem was increased by 1.44-fold in rats in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$). Consequently, the absolute bioavailability (A.B.) of diltiazem in the presence of ticlopidine (9.3-11.5%) was signifi cantly higher (9 $mg{\cdot}kg^{-1}$, p<0.05) than that in the control group (8.0%). Although ticlopidine significantly (p<0.05) increased the AUC of desacetyldiltiazem, the metabolite-parent AUC ratio (M.R.) in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$) was significantly decreased compared to that in the control group, implying that ticlopidine could effectively inhibit the metabolism of diltiazem. In conclusion, the concomitant use of ticlopidine significantly enhanced the oral bioavailability of diltiazem in rats by inhibiting CYP3A4-mediated metabolism in the intestine and/or liver rather than by inhibiting intestinal P-gp activity or renal elimination of diltiazem.

Effects of Amlodipine on the Pharmacokinetics of Warfarin after Oral and Intravenous Administration of Warfarin in Rats

  • Choi, Dong-Hyun;Piao, Yong-Ji;Choi, Eun-Joo;Choi, Jun-Shik;Burm, Jin-Pil
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.493-497
    • /
    • 2011
  • The aim of this study was to investigate the effect of amlodipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of amlodipine (0.1 or 0.4 mg/kg) in rats. The effect of amlodipine on the P-glycoprotein (P-gp) as well as cytochrome P450 (CYP) 3A4 activity was also evaluated. Amlodipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 9.1 ${\mu}M$. Compared to those animals in the oral control group (warfarin without amlodipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (0.1 mg/kg, p<0.05; 0.4 mg/kg, p<0.01) by 26.5-53.5%, and the peak plasma concentration ($C_{max}$) was significantly higher (0.4 mg/kg, p<0.05) by 26.2% after oral administration of warfarin with amlodipine, respectively. Consequently, the relative bioavailability of warfarin increased by 1.26- to 1.53-fold and the absolute bioavailability of warfarin with amlodipine was significantly greater by 61.7-72.5% compared to that in the control group (47.4%). In contrast, amlodipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism in the intestine and/or liver rather than renal elimination and P-gp by amlodipine.

Pharmacokinetic Interaction between Simvastatin and Nicardipine (심바스타틴과 니카르디핀과의 약동학적 상호작용)

  • Choi, Byung-Chul;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.19 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • The aim of this study was to investigate the effect of simvastatin on the pharmacokinetics of nicardipine in rats. Pharmacokinetic parameters of nicardipine were determined after an oral administration of nicardipine (12 mg/kg) to rats coadministered with simvastatin (0.3 and 1.0 mg/kg). Compared with the control (given nicardipine alone), coadministration of simvastatin (1.0 mg/kg) significantly (p<0.05) increased the area under the plasma concentration (AUC) and peak plasma concentration ($C_{max}$) of nicardipine. The relative bioavailability (RB%) of nicardipine increased from 1.19- to 1.48-fold. However there were no significant changes in $t_{max}$, and $t_{1/2}$ of nicardipine. The enhanced oral bioavailability of nicardipine might be due to an inbition of cytochrom P450 3A mediated-metabolism of nicardipine in the intestine and in the liver by simvastatin. Based on these results, the concurrent use of simvastatin significantly enhanced the oral exposure of nicardipine in rats. The dosage regimen of nicardipine should be taken into consideration for potential drug interaction when combined with simvastatin in clinics.

  • PDF

Effects of Fermented Total Mixed Ration and Cracked Cottonseed on Milk Yield and Milk Composition in Dairy Cows

  • Wongnen, C.;Wachirapakorn, C.;Patipan, C.;Panpong, D.;Kongweha, K.;Namsaen, N.;Gunun, P.;Yuangklang, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1625-1632
    • /
    • 2009
  • Four lactating Holstein Friesian crossbred cows, with an average initial weight of 450 kg, 48${\pm}$12 days in milk and initial milk yield of 18 kg/h/d, were randomly arranged according to a 2${\times}$2 factorial arrangement in a 4${\times}$4 in Latin square design with 21-d period to investigate the effects of type of total mixed ration (TMR) and type of whole cottonseed (WCS) on intake, digestibility and milk production. The dietary treatments were i) TMR and WCS supplementation at 0.5 kg/h/d, ii) TMR and cracked WCS (cWCS) supplementation at 0.5 kg/h/d, iii) fermented TMR (FTMR) and WCS supplementation at 0.5 kg/h/d, and iv) FTMR and cWCS supplementation at 0.5 kg/h/d. Voluntary feed intake was 15.9, 15.2, 15.4 and 15.6 kg DM/d in dietary treatment 1, 2, 3 and 4, respectively. Digestibility of DM, OM, CP, EE, NDF and ADF were not significantly different among dietary treatments. Ruminal pH, $NH_{3}-N$ and volatile fatty acids in the rumen were also not significantly different among type of TMR or type of WCS. Blood urea-N concentration was not significantly different among dietary treatments. Ruminal bacteria population tended to increase but ruminal protozoa population tended to decrease with supplementation of cWCS, but they were not affected by FTMR. Milk yield and 3.5% FCM were not statistically different among treatments (16.6, 16.2, 17.0, 16.3 kg/d and 18.0, 18.6, 19.9 and 19.0 kg/d, respectively). Milk composition was not significantly different among dietary treatments. However, unsaturated fatty acids in milk fat in cows fed FTMR were lower (p<0.05) than in cows fed TMR. In conclusion, fermentation is a conceivable method to improve the quality of TMR for long-time storage and the cracking method is suitable to release the fat from cottonseed for enhancing fatty acid deposition in milk. Thus, the combination of FTMR and cWCS supplementation would be an alternative strategy to improve performance of lactating cows.