DOI QR코드

DOI QR Code

Effects of Amlodipine on the Pharmacokinetics of Warfarin after Oral and Intravenous Administration of Warfarin in Rats

  • Received : 2011.04.05
  • Accepted : 2011.09.01
  • Published : 2011.10.30

Abstract

The aim of this study was to investigate the effect of amlodipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of amlodipine (0.1 or 0.4 mg/kg) in rats. The effect of amlodipine on the P-glycoprotein (P-gp) as well as cytochrome P450 (CYP) 3A4 activity was also evaluated. Amlodipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 9.1 ${\mu}M$. Compared to those animals in the oral control group (warfarin without amlodipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (0.1 mg/kg, p<0.05; 0.4 mg/kg, p<0.01) by 26.5-53.5%, and the peak plasma concentration ($C_{max}$) was significantly higher (0.4 mg/kg, p<0.05) by 26.2% after oral administration of warfarin with amlodipine, respectively. Consequently, the relative bioavailability of warfarin increased by 1.26- to 1.53-fold and the absolute bioavailability of warfarin with amlodipine was significantly greater by 61.7-72.5% compared to that in the control group (47.4%). In contrast, amlodipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism in the intestine and/or liver rather than renal elimination and P-gp by amlodipine.

Keywords

References

  1. Abernethy, D. R., Kaminsky, L. S. and Dickinson, T. H. (1991) Selective inhibition of warfarin metabolism by diltiazem in humans. J. Pharmacol. Exp. Ther. 257, 411-415.
  2. Abernethy, D. R. (1992) Pharmacokinetics and pharmacodynamics of amlodipine. Cardiology 80, 31-36. https://doi.org/10.1159/000175050
  3. Benet, L. Z., Cummins, C. L. and Wu, C. Y. (2003) Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr. Drug Metab. 4, 393-398. https://doi.org/10.2174/1389200033489389
  4. Choi, J. S., Piao, Y. J. and Han, H. K. (2006) Phatmacokinetics interaction between Fluvastatin and Diltiazem in rats. Biopharm. Drug Dispos. 27, 437-441. https://doi.org/10.1002/bdd.521
  5. Choi, D. H., Chang, K. S., Hong, S. P. and Choi, J. S. (2008) Effect of atrovastatin on intravenous and oral pharmacokinetics of verapamil in rats. Biopharm. Drug Dispos. 29, 45-50. https://doi.org/10.1002/bdd.582
  6. Crespi, C. L., Miller, V. P. and Penman, B. W. (1997) Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188-190. https://doi.org/10.1006/abio.1997.2145
  7. Cummins, C. L., Jacobsen, W. and Benet, L. Z. (2002) Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300, 1036-1045. https://doi.org/10.1124/jpet.300.3.1036
  8. Darvari, R. and Boroujerdi, M. (2004) Concentration dependency of modulatory effect of amlodipine on P-glycoprotein efflux activity of doxorubicin - a comparison with tamoxifen. J. Pharm. Pharmacol. 56, 985-991. https://doi.org/10.1211/0022357043941
  9. Han, C. Y., Cho, K. B., Choi, H. S., Han, H. K. and Kang, K. W. (2008) Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis 29, 1837-1844. https://doi.org/10.1093/carcin/bgn092
  10. Harmsze, A. M., Robijns, K., van Werkum ,J. W., Breet, N. J., Hackeng, C. M., Ten Berg, J. M., Ruven, H. J., Klungel, O. H., de Boer, A. and Deneer, V. H. (2010) The use of amlodipine, but not of Pglycoprotein inhibiting calcium channel blockers is associated with clopidogrel poor-response. Thromb. Haemost. 103, 920-925. https://doi.org/10.1160/TH09-08-0516
  11. Hirsh, J., Dalen, J. E., Anderson, DR., Poller, L., Bussey, H., Ansell, J., Deykin, D. and Brandt, J. T. (1998) Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 114, 445-469. https://doi.org/10.1378/chest.114.5_Supplement.445S
  12. Holford, N. H. G. (1986) Clinical pharmacokinetics and pharmacodynamics of warfarin: understanding the dose-effect relationship. Clin. Pharmacokinet. 11, 483-504. https://doi.org/10.2165/00003088-198611060-00005
  13. Kaminsky, L. S. and Zhang, Z. Y. (1997) Human P450 metabolism of warfarin. Pharmacol. Ther. 73, 67-74. https://doi.org/10.1016/S0163-7258(96)00140-4
  14. Kim, K. A., Park, P. W. and Park, J. Y. (2009) Effect of cytochrome P450 3A5*3 genotype on the stereoselective pharmacokinetics of amlodipine in healthy subjects. Chirality 21, 485-491. https://doi.org/10.1002/chir.20588
  15. Kungys, G., Naujoks, H. and Wanner, C. (2003) Pharmacokinetics of amlodipine in hypertensive patients undergoing haemodialysis. Eur. J. Clin. Pharmacol. 59, 291-295. https://doi.org/10.1007/s00228-003-0620-4
  16. Meredith, P. A. and Elliott, H. L. (1992) Clinical pharmacokinetics of amlodipine. Clin. Pharmacokinet. 22, 22-31. https://doi.org/10.2165/00003088-199222010-00003
  17. Mungall, D. R. (1985) Population pharmacokinetics of racemic warfarin in adult patients. J. Pharmacokinet. Biopharm. 13, 213-227. https://doi.org/10.1007/BF01065653
  18. Nishio, S., Watanabe, H., Kosuge, K., Uchida, S., Hayashi, H. and Ohashi, K. (2005) Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens. Res. 28, 223-227. https://doi.org/10.1291/hypres.28.223
  19. Saeki, T., Ueda, K., Tanigawara, Y., Hori, R. and Komano, T. (1993) P-glycoprotein-mediated transcellular transport of MDR-reversing agents. FEBS Lett. 324, 99-102. https://doi.org/10.1016/0014-5793(93)81540-G
  20. Scordo, M. G., Pengo, V., Spina, E., Dahl, M. L., Gusella, M. and Padrini, R. (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin. Pharmacol. Ther. 72, 702-710. https://doi.org/10.1067/mcp.2002.129321
  21. Stoysich, A. M., Lucas, B. D., Mohiuddin, S. M. and Hilleman, D. E. (1996) Further elucidation of pharmacokinetic interaction between diltiazem and warfarin. Int. J. Clin. Pharmacol. Ther. 34, 56-60.
  22. Wacher, V. J., Salphati, L. and Benet, L. Z. (2001) Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 46, 89-102. https://doi.org/10.1016/S0169-409X(00)00126-5
  23. Wallin, R., Sane, D. C. and Hutson, S. M. (2002) Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system. Thromb. Res. 108, 221-226. https://doi.org/10.1016/S0049-3848(03)00060-4
  24. Yusa, K. and Tsuruo, T. (1989) Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specifi c sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 49, 5002-5006.
  25. Zhu, M., Chan, K. W., Ng, L. S., Chang, Q., Chang, S. and Li. R. C. (1999) Possible infl uences of ginseng on the pharmacokinetics and pharmacodynamics of warfarin in rats. J. Pharm. Pharmacol. 51, 175-180. https://doi.org/10.1211/0022357991772105

Cited by

  1. Amlodipine interfere in serum albumin binding of loasrtan and its active metabolite losartan carboxylic acid (EXP- 1734): Contra-contemporary in vitro approaches vol.11, pp.3, 2011, https://doi.org/10.1080/22297928.2021.1915865
  2. The Effect of Wheatgrass Lyophilizate on Blood Clotting Time in Rats vol.89, pp.3, 2011, https://doi.org/10.3390/scipharm89030039