• Title/Summary/Keyword: P. distichum var. indutum

Search Result 4, Processing Time 0.019 seconds

Occurrence characteristics and management plans of Paspalum distichum and P. distichum var. indutum (습지에서 발생하는 생태계교란야생식물인 물참새피와 털물참새피의 발생특성과 관리방안)

  • In Yong Lee;Seung Hwan Kim;Yong Ho Lee;Adhikari Pradeep;Dong Gun Kim;Sun Hee Hong
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.325-334
    • /
    • 2022
  • Paspalum distichum and P. distichum var. indutum are perennial weeds of the family Poaceae that prefer moist environments such as waterfronts and waterways. The origin of both species is North America. P. distichum is distributed all over the world. However, P. distichum var. indutum occurs only in the United States, Japan, and Korea. For this reason, in many countries, P. distichum and P. distichum var. indutum are classified as the same species. In other words, P. distichum var. indutum is a different ecological type of P. distichum. Both species can reproduce and spread mainly by rhizome fragments rather than seeds. This rhizome has a characteristic that it does not germinate if it is buried in the ground with depth of more than 3 cm. As a management method for P. distichum and P. distichum var. indutum in agricultural lands (paddy fields), it is effective to combine cultural control and chemical control methods. In other words, combining deep plowing and harrowing can suppress the budding of water sparrow that has invaded paddy fields or fallow paddy fields. After that, these two species that germinate can be controlled by spraying soil treatment herbicides such as butachlor and thiobencarb or foliar treatment herbicides such as cyhalofop-butyl and fenoxaprop-p-ethyl.

Prediction of Changes in the Potential Distribution of a Waterfront Alien Plant, Paspalum distichum var. indutum, under Climate Change in the Korean Peninsula (한반도에서 기후변화에 따른 수변 외래식물인 털물참새피의 분포 변화 예측)

  • Cho, Kang-Hyun;Lee, Seung Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.206-215
    • /
    • 2015
  • Predicting the changes in the potential distribution of invasive alien plants under climate change is an important and challenging task for the conservation of biodiversity and management of the ecosystems in streams and reservoirs. This study explored the effects of climate change on the potential future distribution of Paspalum distichum var. indutum in the Korean Peninsula. P. distichum var. indutum is an invasive grass species that has a profound economic and environmental impact in the waterfronts of freshwater ecosystems. The Maxent model was used to estimate the potential distribution of P. distichum var. indutum under current and future climates. A total of nineteen climatic variables of Worldclim 1.4 were used as current climatic data and future climatic data predicted by HadGEM2-AO with both RCP 2.6 and RCP 8.5 scenarios for 2050. The predicted current distribution of P. distichum var. indutum was almost matched with actual positioning data. Major environmental variables contributing to the potential distribution were precipitation of the warmest quarter, annual mean temperature and mean temperature of the coldest quarter. Our prediction results for 2050 showed an overall reduction in climatic suitability for P. distichum var. indutum in the current distribution area and its expansion to further inland and in a northerly direction. The predictive model used in this study appeared to be powerful for understanding the potential distribution, exploring the effects of climate change on the habitat changes and providing the effective management of the risk of biological invasion by alien plants.

Selection of Aquatic Plants Having High Uptake Ability of Pollutants in Raw Sewage Treatment (생활오폐수에 대한 정화력이 높은 수생식물 선발)

  • Kim, Choon-Song;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae;Ku, Yeon-Chung;Kang, Hang-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • Excess runoff contaminated with N and P can impact the quality of downstream water. It has been known that aquatic plants improve the water quality through their intake of organic or inorganic nutrients. This study was conducted to select aquatic plants having high purification ability for nutrient N and P, and mineral nutrients related to EC such as K, Ca, Na, Cl, and $SO_4$ in raw sewage water in greenhouse. We assessed nutrient phytoremediation potential of alien hydrophyte and hydro-crop as well as native landscape hydrophyte to select suitable aquatic plant applied to artificial wetland and buffering site of stream-side. The amount of irrigation water during whole growing period of aquatic plane ranged from 225 L $m^{-2}$ to 444 L $m^{-2}$. Oryza sativa, Typha orientalis, Zizania latifolia, Aster subulatus, Coix lachryma-jobi var. mayuen, Paspalum disdichum var. indutum which had high biomass consumed the large amount of irrigation water over 350 L $m^{-2}$. As a result of analysis of water purification effect N and P content of shoot biomass, and media soil after experiment, Oryza sativa, Zizania latifolia, Aster subulatus, Coix lachryma-jobi var. mayuen, Paspalum distichum var. indutum showed high purification ability about eutrophication elements such as T-N and T-P. It is presented that Pistia stratiotes, Eichhornia crassipes, and Paspalum distichum var. indutum had excellent purification ability about K, Ca, Na, and Cl. Moreover, Paspalum distichum var. indutum greatly removed $SO_4$ in row sewage water.

Screening of Nutrient Removal Hydrophyte and Distribution Properties of Vegetation in Tributaries of the West Nakdong River (서낙동강 유역 하천의 식생 분포특성과 영양염류 정화 수생식물 탐색)

  • Kim, Choon-Song;Ko, Jee-Yeon;Lee, Jae-Saeng;Hwang, Jae-Bok;Park, Sung-Tae;Kang, Hang-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.147-156
    • /
    • 2006
  • This study was conducted to investigate natural distribution of aquatic plane and to find out natural aquatic plants which highly absorb nutrient N and P. We surveyed vegetation within ${\pm}2m$ from streamside in 12 tributaries of the West Nakdong river watershed during May to October in 2003. Hydrophytes surveyed in tributaries of the West Nakdong river watershed were 27 families, 61 genera, 76 species, 3 varieties. Major dominance species of aquatic plants were Z. latifolia, P. communis, P. thunbergii, P. arundinacea, P. japonica, and P. distichum var. indutum. Aquatic plants having high production ability of biomass were Z. latifolia, P. communis, P. arundinacea, P. japonica, and E. crus-galli var. echinata. In the vertical distribution of hydrophytes within streams, dominant species were P. thunbergii and P. japonica in the upper stream, but dominant species in the downstream were P. communis and Z. latifolia. Species diversity or aquatic, plants was reduced, but their biomass and nutrient (T-N and T-P) content per the natural area unit $(m^2)$ were increased in the downsteaam. Nutrient N and P content of aquatic plants per the natural area unit were high at Joman river, Pyeonggangcheon, Bulam drainage canal, and Hogyecheon. Fifty-seven species of aquatic plants having high biomass were grounped into 4 categories $(I{\sim}IV)$ according to their nutrient content per dry weight unit. I group $(T-N,\;\geqq20gkg^{-1}\;&\;P_2O_5,\;\geqq7gkg^{-1})$ was comprised of 3 submerged plants (H. verticillata, P. crispus, and C. demersum), e emergent plants (O. javanica, P. distichum var. indutum, and R. sceleratus), 1 suspended plant (T. japonica), and 1 riparian plant (A. lobatum). Otherwise, in classification of natural hydrophytes according to their nutrient content per natural area unit, Z. latifolia, P. communis, P. longiseta, P. arundinacea, and P. distichum var. indutum possessing great biomass productivity as emergent plants were included in I group $(T-N,\;\geqq1gm^{-2}\;&\;P_2O_5,\;\geqq0.7gm^{-2})$.