• Title/Summary/Keyword: P-wave detection

Search Result 124, Processing Time 0.025 seconds

Detection and Analysis of Event-Related Potential P300 in EEG by 4-Stimulus Oddball Paradigm

  • Jang, Yun-Seok;Ryu, Soo-Ah;Park, Kyu-Chil
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.234-237
    • /
    • 2010
  • P300 component of the event-related potential(ERP) has been studied for theoretical, empirical, and clinical applications. Nowadays the 1-, 2-, and 3-stimulus oddball paradigms are used for eliciting P300 component of EEG in the auditory stimulus experiments. In this paper, we used a method to add one more stimulus to the 3-stimulus auditory paradigm. The adding stimulus has not the same volume but the same tone of the target stimulus. The 4-stimulus oddball paradigm to use two targets is used to elicit the P300 event-related potentials. In 4-stimulus oddball paradigm, an infrequent non-target (p=0.10) is presented in addition to two infrequent targets (p=0.10) and a frequent standard (p=0.70). Two target stimuli elicited a P300 component with a parietal maximum distribution. The amplitude of the P300 in target 2 was larger than that in target 1 and the latency of the P300 in target 2 was longer than that in target 1. The P300 component due to target 2 stimuli was larger than that due to target 1 stimuli. The experimental results approve that the 4-stimulus oddball paradigm can elicit P300 component clearly. The results are compared with the results of the traditional oddball paradigm.

Acoustic emission localization in concrete using a wireless air-coupled monitoring system

  • Yunshan Bai;Yuanxue Liu;Guangjian Gao;Shuang Su
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.195-205
    • /
    • 2023
  • The contact acoustic emission (AE) monitoring system is time-consuming and costly for monitoring concrete structures in large scope, in addition, the great difference in acoustic impedance between air and concrete makes the detection process inconvenient. In this work, we broaden the conventional AE source localization method for concrete to the non-contact (air-coupled) micro-electromechanical system (MEMS) microphones array, which collects the energy-rich leaky Rayleigh waves, instead of the relatively weak P-wave. Finite element method was used for the numerical simulations, it is shown that the propagation velocity of leaky Rayleigh waves traveling along the air-concrete interface agrees with the corresponding theoretical properties of Lamb wave modes in an infinite concrete slab. This structures the basis for implementing a non-contact AE source location approach. Based on the experience gained from numerical studies, experimental studies on the proposed air-coupled AE source location in concrete slabs are carried out. Finally, it is shown that the locating map of AE source can be determined using the proposed system, and the accuracy is sufficient for most field monitoring applications on large plate-like concrete structures, such as tunnel lining and bridge deck.

Image Registration and Fusion between Passive Millimeter Wave Images and Visual Images (수동형 멀리미터파 영상과 가시 영상과의 정합 및 융합에 관한 연구)

  • Lee, Hyoung;Lee, Dong-Su;Yeom, Seok-Won;Son, Jung-Young;Guschin, Vladmir P.;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.349-354
    • /
    • 2011
  • Passive millimeter wave imaging has the capability of detecting concealed objects under clothing. Also, passive millimeter imaging can obtain interpretable images under low visibility conditions like rain, fog, smoke, and dust. However, the image quality is often degraded due to low spatial resolution, low signal level, and low temperature resolution. This paper addresses image registration and fusion between passive millimeter images and visual images. The goal of this study is to combine and visualize two different types of information together: human subject's identity and concealed objects. The image registration process is composed of body boundary detection and an affine transform maximizing cross-correlation coefficients of two edge images. The image fusion process comprises three stages: discrete wavelet transform for image decomposition, a fusion rule for merging the coefficients, and the inverse transform for image synthesis. In the experiments, various types of metallic and non-metallic objects such as a knife, gel or liquid type beauty aids and a phone are detected by passive millimeter wave imaging. The registration and fusion process can visualize the meaningful information from two different types of sensors.

MULTISENSOR SATELLITE MONITORING OF OIL POLLUTION IN NORTHEASTERN COASTAL ZONE OF THE BLACK SEA

  • Shcherbak, Svetlana;Lavrova, Olga;Mytyagina, Marina;Bocharova, Tatiana;Krovotyntsev, Vladimir;Ostrovskiy, Alexander
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.989-992
    • /
    • 2006
  • The new approach to the problem of oil spill detection consisting in combined use of all available quasiconcurrent satellite information (AVHRR NOAA, TOPEX/Poseidon, Jason-1, MODIS Terra/Aqua, QuikSCAT) is suggested. We present the results of the application of the proposed approach to the operational monitoring of seawater condition and pollution in the coastal zone of northeastern Black Sea conducted in 2006. This monitoring is based on daily receiving, processing and analysis of data different in nature (microwave radar images, optical and infrared data), resolution and surface coverage. These data allow us to retrieve information on seawater pollution, sea surface and air-sea boundary layer conditions, seawater temperature and suspended matter distributions, chlorophyll a concentration, mesoscale water dynamics, near-surface wind and surface wave fields. The focus is on coastal seawater circulation mechanisms and their impact on the evolution of pollutants.

  • PDF

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Analysis of the Impact of Reflected Waves on Deep Neural Network-Based Heartbeat Detection for Pulsatile Extracorporeal Membrane Oxygenator Control (반사파가 박동형 체외막산화기 제어에 사용되는 심층신경망의 심장 박동 감지에 미치는 영향 분석)

  • Seo Jun Yoon;Hyun Woo Jang;Seong Wook Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • It is necessary to develop a pulsatile Extracorporeal Membrane Oxygenator (p-ECMO) with counter-pulsation control(CPC), which ejects blood during the diastolic phase of the heart rather than the systolic phase, due to the known issues with conventional ECMO causing fatal complications such as ventricular dilation and pulmonary edema. A promising method to simultaneously detect the pulsations of the heart and p-ECMO is to analyze blood pressure waveforms using deep neural network technology(DNN). However, the accurate detection of cardiac rhythms by DNNs is challenging due to various noises such as pulsations from p-ECMO, reflected waves in the vessels, and other dynamic noises. This study aims to evaluate the accuracy of DNNs developed for CPC in p-ECMO, using human-like blood pressure waveforms reproduced in an in-vitro experiment. Especially, an experimental setup that reproduces reflected waves commonly observed in actual patients was developed, and the impact of these waves on DNN judgments was assessed using a multiple DNN (m-DNN) that provides accurate determinations along with a separate index for heartbeat recognition ability. In the experimental setup inducing reflected waves, it was observed that the shape of the blood pressure waveform became increasingly complex, which coincided with an increase in harmonic components, as evident from the Fast Fourier Transform results of the blood pressure wave. It was observed that the recognition score (RS) of DNNs decreased in blood pressure waveforms with significant harmonic components, separate from the frequency components caused by the heart and p-ECMO. This study demonstrated that each DNN trained on blood pressure waveforms without reflected waves showed low RS when faced with waveforms containing reflected waves. However, the accuracy of the final results from the m-DNN remained high even in the presence of reflected waves.

A Study on the Underwater Target Detection Using the Waveform Inversion Technique (파형역산 기법을 이용한 수중표적 탐지 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Kim, Woo Shik;Choi, Sang Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.487-492
    • /
    • 2015
  • A short-range underwater target detection and identification techniques using mid- and high-frequency bands have been highly developed. However, nowadays the long-range detection using the low-frequency band is requested and one of the most challengeable issues. The waveform inversion technique is widely used and the hottest technology in both academia and industry of the seismic exploration. It is based on the numerical analysis tool, and could construct more than a few kilometers of the subsurface structures and model-parameters such as P-wave velocity using a low-frequency band. By applying this technique to the underwater acoustic circumstance, firstly application of underwater target detection is verified. Furthermore, subsurface structures and it's parameters of the war-field are well reconstructed. We can confirm that this technique greatly reduces the false-alarm rate for the underwater targets because it could accurately reproduce both the shape and the model-parameters at the same time.

Determination of Thioglycolic acid in the presence of Copper(II) by Adsorptive Stripping Voltammetry (흡착 벗김 전압전류법에 의한 구리이온(II) 존재하에서 티오글리콜산의 정량)

  • Hong, Mi-Jeong;Kwon, Young-Sun
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Determination method of trace thioglycolate has been studied by adsorptive stripping voltammetry. Copper(II)-thioglycolate complex is adsorbed at the hanging mercury drop electrode and stripped during cathodic scan. Electrolyte was used pH 6.5 phosphate and pH 9.5 borate buffer solutions. Optimal conditions were a copper(II) concentration $1{\times}10^{-4}M$, an adsorption accumulation potential -0.2V, an adsorption accumulation time 60 sec and a scan rate 20mV/sec. A detection limit of $1{\times}10^{-9}M$ thioglycolate was obtained. The method was applied to the determination of thioglycolate in cold wave fluids and depilating creams.

  • PDF

Clinical Characteristics of Pediatric Patients With the Coronavirus Disease 2019 During the Third and Fourth Waves of the Epidemic in Korea: A Single Center Retrospective Study (국내 코로나바이러스감염증-19 유행 제3-4기 소아청소년 환자의 임상적 특성: 단일기관 후향적 연구)

  • Gawon Moon;Donghyun Shin;Soo-Han Choi
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.3
    • /
    • pp.131-140
    • /
    • 2022
  • Purpose: Since the coronavirus disease 2019 (COVID-19) pandemic began, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged, and distinct epidemic waves of COVID-19 have occurred for an extended period. This study aimed to analyze the clinical and epidemiological characteristics of children with COVID-19 from the third wave to the middle of the fourth epidemic wave in Korea. Methods: We retrospectively reviewed the medical records of hospitalized patients aged ≤18 years with laboratory-confirmed COVID-19. The study periods were divided into the third wave (from November 13, 2020 to July 6, 2021) and the fourth wave (from July 7 to October 31, 2021). Results: Ninety-three patients were included in the analysis (33 in the third and 60 in the fourth waves). Compared with the third wave, the median age of patients was significantly older during the fourth wave (6.7 vs. 2.8 years, P=0.014). Household contacts was reported in 60.2% of total patients, similar in both periods (69.7 vs. 55.0%, P=0.190). Eighty-one (87.1%) had symptomatic SARS-CoV-2 infection. Among these, 10 (12.3%) had no respiratory symptoms. Anosmia or ageusia were more commonly observed in the fourth epidemic wave (10.7 vs. 34.0%, P=0.032). Most respiratory illness were upper respiratory tract infections (94.4%, 67/71), 4 had pneumonia. The median cycle threshold values (detection threshold, 40) for RNA-dependent RNA polymerase (RdRp) and envelope (E) genes of SARS-CoV-2 were 21.3 and 19.3, respectively. There was no significant difference in viral load during 2 epidemic waves. Conclusions: There were different characteristics during the two epidemic waves of COVID-19.

Germanium(IV) Content in the Korean Angelica keiskei Koidz (국내산(國內産) 명일엽(明日葉)의 부위별 게르마늄 함량(含量))

  • Jeong, Seung-Il;Han, Wan-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.1
    • /
    • pp.11-15
    • /
    • 1999
  • The uptake of germanium(Ge) by health foodstuffs was interesting because of a therapeutic effect of organic germanium. Germanium contents in different plant parts of the cultivated Korean Angelica keiskej Koidz in several growing districts were determined by square wave anodic stripping voltammetry. Experimental conditions in germanium determination from Angelica kejskej Koidz were as follows : deposition time; 20 sec, deposition potential; -0.9 volts vs Ag/AgCl, and frequency; 100 Hz in 0.1M\;HClO_4, supporting electrolyte solution at pH 2.43 containing $1.5\;{\times}\;10^5\;M$ pyrocatechol violet. Calibration curve showed a good lineality in the range of 0.4 ppb to 2.0 ppm and the detection limit was 0.08 ppb. There was a large difference in content according to growing districts ranging from 102 to 386ppm. Germanium content in leaf parts was much higher than that in stems.

  • PDF